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Stochastic partial differential equatiodSPDES$ are the basic tool for modeling systems where noise is
important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the
universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivatemt-to
qguantum field theories that nevertheless exhibit deep and important relationships with quantum field theory. In
this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate
how to extract all the one-loop physics for ambitrary SPDE subject taarbitrary Gaussian noise. It is
extremely important to realize that Gaussian noise du#smply that the field variables undergo Gaussian
fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as
serious as might be supposed: Experience with quantum field th€@FEEs has taught us that one-loop
physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does,
however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite
using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formal-
ism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in) @Rd instead focus attention
on a minimalist approach that uses only the physical fiéldis “direct approach” is the SPDE analog of
canonical quantization using physical fieldé\fter setting up the general formalism for the characteristic
functional (partition functior), we show how to define the effective action to all loops, and then focus on the
one-loop effective action and its specialization to constant fields: the effective potential. The physical inter-
pretation of the effective action and effective potential for SPDEs is addressed and we show that key features
carry over from QFT to the case of SPDEs. An important result is thar@itudeof the two-point function
governing the noise acts as the loop-counting parameter and is the analog of Planck’s ¢omsthit SPDE
context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to
translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT.
[S1063-651%9912011-1
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. INTRODUCTION lants for the fieldg(x,t). Also, the limitation to one-loop
physics is not as serious as might be supposed: Experience
Stochastic partial differential equatioiSPDE$ are an  with quantum field theorieéQFTs has taught us that one-
essential tool in modeling systems where noise is relevaribop physics is often quite adequate to give a good descrip-
[1]. SPDEs are used for models of many macroscopic sysion of the salient issugdd6—21]. In fact, in QFT, the calcu-
tems, from turbulencg¢2-4], to pattern-formatior{5,6], to  lation of one-loop quantities can be augmented by means of
the structural development of the Universe it§@H-11]. Itis  “renormalization-group improved perturbation theory,”
known that certain SPDEs can be studied with tools thatvhich contains most of the relevant features of the physics to
transform them into equivalenfstochastit field theories all orders in the expansion parame{d7,18. (This was
which exhibit deep and important relationships with quantumcalled “magical perturbation theory” by the authdi22] of
field theory(QFT). See, for exampld1,2,5,4 and[12-15. Ref.[16].) Furthermore, at one loofand highey, one can
In this paper we set up the field-theoretical “minimalist also introduce the effective action and effective potential
formalism” for SPDEs, and demonstrate how to extract thg{23—26, tools that allow one to determine the combined ef-
one-loop physics for aarbitrary SPDE subject to additive fects of interactions and fluctuations on the ground state of
Gaussian noise. It is important to realize that Gaussian noistae system. Defining and calculating the one-loop effective
doesnot imply that the field degrees of freedom undergoaction and effective potential is straightforward. Interpreting
Gaussian fluctuations: the combined interplay of interactionshe physical significance of these quantities is more subtle.
and fluctuations will appear in the thif@nd highey cumu-  For arbitrary SPDEs it may not even be meaningful to define
a notion of physical energy. Even when the physical energy
makes sense, dissipative effects may vitiate energy conserva-

*Electronic address: hochberg@laeff.esa.es tion (even when noise is absentWe therefore spend some

Electronic address: carmen@t6-serv.lanl.gov effort in establishing that certain key features of the effective
*Electronic address: mercader@Ilaeff.esa.es action for QFTs carry over to SPDEs. In particular, we dem-
SElectronic address: visser@kiwi.wustl.edu onstrate that it is still meaningful to define and calculate the
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effective potential and look for its minima. The minima of trary time and space derivatives, which does explicitly

the effective potential correspond to ground states of the sysavolve the field¢. Typical examples are

tem, and the locations of these minima are equal to stochastic

%?s?tatlon values of the fluctuating field in the presence of D= %_ v2 diffusion equation, )
While it is possible to provide an abstract nonperturbative

definition of the effective actiof24], in order to proceed 92

with explicit calculationgsuch as for the one-loop effective D=—
. . at

action one needs a perturbative procedure based on an ex-

pansion in some small parameter. A well-known procedure J

of this type, the Martin-Siggia-RoseMSR) formalism, al- D= — Langevin equation. (4)

ready exists in the literaturfl]. The MSR formalism in- ot

vokes additionalunphysical “conjugate fields,” which are ) ) ] ]

generalizations of the fictitious fields sometimes introduced! h€ functionF[ ¢] is any forcing term, generally nonlinear

to deal with the dynamics of diffusion. These fictitious fields I the field ¢. Typical examples are

permit one to extend some of the procedures of conservative

physical systemf to diffusiqn. For in_stance, Mqrse and F[$]=+ E(V* $)? (5)

Feshbach state “the dodge is to consider,., a ‘mirror- 2

image’ system with negative friction, into which the energy o )

goes which is drained from the dissipative systeniSee N the Kardar-Parisi-Zhan¢KPZ) equation,

[27], p. 298) In this paper we do not make use of the con-

jugate field formalism of MSR and, instead, proceed in a Fl¢]=PL&] ©)

direct way in which we only have physical fieldslus pos-

sibly a nontrivial functional Jacobian that can be rewritten in

—v2 wave equation, (3)

in reaction-diffusion-decay systeniB is a polynomial,

terms of ghost fields This approach simplifies the calcula- SH[ ]
tion since it halves the number of fields one has to deal with. Flo]=— (7
These twaalternativeformalisms are very similar to the situ- o¢

ation in spontaneously broken gauge field theories, where v dissinative” SPDE
one can use twoequivalent approaches to perturbation ' Purely dissipative S

theory, such as “unitary gauges” versus “renormalizable tq forcing term will typically not contain any time deriva-
gauges:” in one case thearticle contentis explicit and in a5 put this is not an essential part of the following analy-
the otherren.ormahzabllltyls gxphcn. . sis except insofar as time derivatives may complicate some
After setting up the path-integral formalism for the char- ot the jacobian functional determinants that will be encoun-
acteristic functional(partition function, Z[J], we define  areq pelow. Nonderivative terms linear in the field can be
both the perturbativg23] and nonperturbative effective ac- iyierpreted either as decay ratesiom diffusion term is also
tion [24]. We then focus on the one-loop effective action a”dpresen): as mass terms. They can be freely moved between

its restriction to constanthomogeneous and stationary e giferential operatob and the forcing terni[ 4]. If they
fields: the effective potentidR0,21. An important result is are considered part of the forcing term, then
that theamplitudeof the noise two-point correlation function '

acts as the loop-counting parameter and is the analog of F[p]=— vy describes a decay term,  (8)
Planck’s constant in this SPDE context.
We conclude by deriving the formula for the one-loop Fl$]=—vmPe describes a mass term.  (9)

effective potential of a general SPDE subject to translation-

invariant Gaussian.noise. This.formula has a strong resemrp . fnction 77(>Z,t) is a random function of its arguments
blance to that obtained for ordmary QFTs _and allows us "Und describes the noise that we assume is present in the
eﬁten_d the use'o:‘ %\'/:T ftoorlf in the gnalysus of thi SPDE %ystem. For the remainder of this paper, we consider field-
effective potential. We furthermore demonstrate that much,yenendent additive noise. At this stage the nature and prob-

of the physical intuition regarding the effective action in ,piv gistribution of the noise are completely arbitrary and
QFTs also carries over into SPDEs. Finally, we offer a dis-d0 ngt need to be specified. P y y

cussion of our results. A number of more technical issues are The noise represents our ignorance about precise details

relegated to the Appendixes. in the dynamics of the system. It could be due, for example,
to fluctuations intrinsic to the dynamidsas in the case of

Il. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS guantum mechanigsor it could be thought of as represent-

ing the dynamics of short-scale degrees of freedom which

have not completely decoupled from the macroscopic dy-

Consider the class of stochastic partial differential equanamics(e.qg., thermal or turbulent noigeor it could be a way

A. Elementary definitions

tions of the form of implementing ignorance of thexactinitial or boundary
. . . conditions in the system. Noise can also be a way of sum-
Do(x,t)=F[ (X, t) ]+ n(x,t), (1) marizing the necessary truncation of the deterministic dy-

namics of a many-body system when we try to describe it via
whereD is any linear differential operator, involving arbi- a finite set of variablege.g., a truncated BBGKY hierarchy
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If we think of turning off the noise, we dnotrequire that These equations fall into our classification of general SPDEs
the nonstochastic partial differential equatib=F[ ¢] be  as particular types of Langevin equations widh= 9, and
derivable from an action principl@.e., the nonstochastic with a driving term that is affunctiona) gradient F[ ¢]
partial differential equation need not arise from a Lagrangian= — sH[ ¢1/5¢(x). The nomenclature “purely dissipative”
formalism. Nevertheless, once we include noise, we demonis justified by the fact that in thabsenceof noise these
strate that the presence of noise automatically leads to a gegystems satisfy
eralized action principle for the noisy system. It turns out
that in the presence of Gaussian noise an equation of motion IH[ ¢] SH[ ]
proportional to the factor D¢—F[ ¢]) can always be de- o —j =
rived by varying a well-defined “classical” action, and that 5¢(x)
the solutions to this equation of motion will coincide with
those of the nonstochastic equation, provided a certain Jac
bian determinant is nonsingulére., invertiblg. This is ex-
plained in full detail in Appendix B.

2
) dix<o0. (14)

Note that the reaction-diffusion-decé&gDD) system can be
?nterpreted as an example of a purely dissipative system if
we takeD =g, and
Voo, Px)
B. Some typical examples Hrool ¢1= E(V@ + . P(¢)de
An example of considerable interest is the reaction- _ o
diffusion-decay system where the SPDE is taken th28-  On the other hand, the KPZ systemmista purely dissipative

dx. (15

30] system,

v -, OFkpz ¢(X)] 5 > >

T = ——————=vMS(X—Y)+ AV, (X)) V, 6(X—

-~ vVi¢=Plg]+ 7. (10 5(Y) vm-5(x—y) x®(X) - Vxd(x—y)
This equation is used, for example, to describe the density = vmza(x—y)—x§y¢(y)~ﬁy5(x—y)
#(x,t) of some chemical species as a function of space and
time when the chemical is subject to both diffusiofia v) OFkpd P(Y)] 16
and reaction or decdyia P(¢), a polynomial in the density Sp(X)

field]. Expanding out the first few terms,
The class of purely dissipative SPDEs is a very wide one, but

P(¢p)=Po+ P+ Py’ +P3dp®+-- -, (11)  there are many SPDEs that are not of purely dissipative type.
We do not want to restrict attention to purely dissipative

we can identifyP, with a constantin space and timesource  systems in this paper, rather we want to keep the discussion
or sink, — P, with the decay rate, anB, with the reaction as general as possible.
rate for the two-body reaction, etc. The noise accounts for
random effects due to coupling to external sources, trunca- 1ll. STOCHASTIC AVERAGES, CHARACTERISTIC
tion of degrees of freedom, averaging over microscopic ef- FUNCTIONAL, FEYNMAN RULES
fects, etc. Fom species of chemical reactant, the fiebdis

. . ) . - We will focus on the stochastic partial differential equa-
simply promoted to a vector in configuration spagéx,t)

tion
—¢i(x,t) {i=1, ... n}. [The diffusion constanty, and de-
cay rates then become matrices, the noise a vector, and the D (x,t)=F[b(X,t)]+ n(X,t) (17)
polynomial P;(¢;) a vector-valued polynomial with tenso-
rial coefficients] and analyze it using functional integral techniques: Feynman

A second well-known example is the massive KPZ equadiagrams, the effective action, and the effective potential.
tion (equivalent to the massive noisy Burgers equation We develop the field theory via the most direct route, with
[5,6,13,14,31 no conjugate fields present.

We postpone to subsequent papers more technically in-
volved approaches such as the Martin-Siggia-Rose Lagrang-
ian (with its extra unphysical conjugate fields used for book-
keeping purposgsand the hidden BRST supersymmetry

In the fluid dynamical interpretation of the KPZ equation, theimplicit in  these stochastic differential ~equations

fluid velocity is taken to ba= —V ¢. This model problem 1121534
leads to a form of “turbulence” which is known in the lit- In this section we develop the necessary tools to construct

erature as Burgulend@2,33 the basic field theory and nonequilibrium statistical mechan-
A third example is the enormous class of SPDEs knowr|CS @ssociated with Eq17). We will assumeuniquenessf

as “purely dissipative” systemgl5]. Purely dissipative sys- :he. st_oluftlonttp E?(ﬂ)' ar)I(I:I !ntorger to caIcuIaththe charac-
tems have SPDEs of the form eristic functional, we will introduce aensemble average

over noise realizations, and the notiondfunctionals Once

the characteristic functionals available, we find it useful to
9o _ _ 5H[‘f’] + 7. (13)  introduceghosts in the manner of Faddeev-Pofimfore de-
ot Sp(X) riving the Feynman rulesWe will only need to make one

%—vﬁ2¢=—vm2¢+%(€¢)2+ 7. (12
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assumption about the noise: that it be Gaussian, i.e., that alnd its adjoint
its cumulants are vanishing except the fil(stz(i,t)), and

s 5 T
secondG,=(7n(x,t) n(x',t")). (See, e.g.[35].) jTEde< DT— %) (23

The above is just the functional analog of a standard
Let us assume that the partial differential equatiti), o-function result: Iff(x) =0 has a unique solution a& X,

plus initial conditions, is a well-posed problem. Thus, giventhen

a particular realization of the noise, the differential equa-

A. Step 1: Uniqueness

2g?eisasassumed to have a unique solution which we desig- Xo:J dxx5(x—xo)=J dx x8(F())| ' (x)|
DiorlX,t] 7). (8 - [ et 00T GOT 24

This assumption is relatively mild but does imply that the

nonlinearity is sufficiently weak so as not to drive us past alhe ¢ function forces one to pick up only one contribution
bifurcation point. On the other hand, it is known that noise infrom the solution of the equatiof(x) =0, and the derivative
concert with nonlinearities can lead to the phenomenon ofs there to provide the correct measure to the integral. In the
delayed bifurcation in nonlinear parabolic SPOBS]. If the ~ functional case the derivative becomes a determinant. It is in
partial differential equation is ill-posed, in the sense that thdact the Jacobian determinant associated with the change of
solutions are not unique, additional analysis must be devemariables from¢ to D¢—F[¢]. It is now easy to see that
oped on a case-by-case basis. A specific example of thigne also has the identity

behavior is spontaneous symmetry breaking in QFT, which

causes the naive loop expansion to violate the convexity v _ _ N [
properties of the effective potential. This situation must be Q(¢so|AX,t|n))—f (DAIQ(P)SDS=FLP]=mNIT".

dealt with by an improved loop expansifd7—39. (29

Furthermore, the ensemble average over the noise(12y.
B. Step 2: Ensemble average becomes
For any functionQ(¢) of the field ¢ we introduce the

ensemble averag@ver the noisg defined by

<Q(¢)>:j (D) (D) PL71Q(¢)
<Q(¢)>EJ (D) PL7]Q(¢sard Xt 7)), (19 X 8(Dp—F[p]— nNIT. (26)

where?{ 7] is the probability density functional of the noise. The noise integral is easy to perform, with the result that for
It is normalized to 1, but is otherwise completely arbitrary, arbitrary stochastic averages one has
that is,

<Q(¢)>=f (Dp)P[D—F[1IQ(H)VIT". (27)
f (Dnp)PLn]=1. (20)
We see from this equation that the effect of the noise only
The symbolD7 indicates a functional integral over all in- appears in the stochastic average through its probability dis-
stancedor realization$ of the noise. tribution P[D ¢—F[ ¢]]. It is worthwhile to point out that
the main difference, at this stage of the formalism, between
the present “minimal” approach and that of MSR lies in the
) ) ) . way thed functional is handled. In MSR, instead of integrat-
- Wenextusea functionad function to write the following  jng directly over the noise, as is done here, shiinctional
identity: is replaced by its functional Fourier integral representation.
This is the step wherein the conjugate field enters. If this
¢so|n()zyt| n)zf (D¢)¢5[¢_¢soln()zrt| 7] latter route is taken, the noise integration can be performed
exactly only for Gaussian noise. In the minimal formalism,
by contrast, the integration over the noise can be done ex-
_ _ 9 [7F actly for arbitrary noise. It thus lends itself immediately for
_f (D$)¢AD$=FLPI=nINIT", handling non-Gaussian systems: For general noise distribu-
(21)  tions we can explicitly write down the probability distribu-

] ~ tion for the fields as
where we have performed a change of variables and intro-

duced the Jacobian functional determinant, defined by P[¢]=P[D ¢—F[p1INTT". (29)

C. Step 3: é functionals

J=del D— ﬁ 22) We will not explore further the possibility of arbitrary noise
o¢ in this paper, since Gaussian noigehich manifestly does
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not imply Gaussian fluctuations of the fie)ds already suf- The characteristic functiongpartition function is thus seen
ficiently general to be of great practical interest. from Eq.(32) to be
The presence of the functional determinant is essential: it
must be kept to ensure proper counting of the solutions to the
original stochastic differential equation. In QFT this func- 1
tional determinant is known as the Faddeev-Popov determi-Z[J]= —éJ (DHINITT exp( J J¢>
nant and is essential in maintaining unitary9,21], i.e., de(27G,)

conservation of probability. In some particular cases the

functional determinant is field-independent, and it is safe to Xex;{ - %J J (Dp—F[¢])G, (D¢~ F[¢>])).
neglect it. We discuss this more fully in Appendix A and in

the companion papei80,31], but for the sake of generality (34)

we will carry these determinants alofgith little extra cost

for the rest of this paper.
This characteristic functiondpartition function contains all

the physics of the model since it allows for the calculation of
averages, correlation functions, thermodynamic variables,
A particularly useful quantity is the generating functional, etc. Note that the noise has been completely eliminated and

or _characteristic functionalpartition function, defined by  gyrvives only through the explicit appearance of its two-

taking point correlation function in the above. Since the character-
istic functional is now given as a path integral over the

(29 physical field, all the standard machinery of statistical field
theory (and quantum field theoyycan be brought to bear
[40]. See, for exampld,15,19-2] and[41-51].

This formula for the partition function demonstrates that
def (modulo_Jagobian _determirjahtall of the physics of any
7[3]= < eXp( J' dx J(X)¢(X))> (30) sftocha}stlc differential equatu‘)‘n can be extrac&ed from a func-

tional integral based on the “classical action

D. Step 4: Characteristic functional (partition function )

Q(¢)=exp( f d% dt J(X,t) (X, t)

in Eqg. (19). We define it as follows:

(31

=f (ch)P[qs]exp(f dx 3
Sc.assicf%ff(D¢—F[¢]>G;1<D¢—F[¢]>. (35

- (D¢)P[D¢—F[¢]]exp(fde¢) 77",

(320  This “classical action” is a generalization of the Onsager-
) Machlup actior{52]. The Onsager-Machlup paper dealt with
with an obvious condensation of notatiahx=d% dt. When  stochastic differential equations rather than partial differen-
there is no risk of confusion, we will suppress tthe com-  tial equations(mechanics rather than field theprgnd was
pletely. This key result will enable us to calculate the effec-limited to noise that was temporally white. As their formal-

tive action and the effective potential in a direct way. ism was developed with the notions of linear-response theory
in mind, Onsager and Machlup assumed the “forcing term”
E. Step 5: Gaussian noise F[ ¢] to be linear, so thaboth the noise and the field fluc-

i K ) h . tuations were Gaussian. In our formalism all these assump-
We will now make some assumptions about the noise: Wgjqns can be relaxed: the forcing term can be nonlinear and in

assume it to be Gaussian. Without loss of generality we cagenera) the field fluctuations will not be Gaussian even if the
take the noise to have zero mean, since if the mean is NOMhise is Gaussian.

zero we can always redefine the forcing tdfing ] to make
the noise have zero mean. We therefore take the noise to be
Gaussian of zero mean, so that the only nonzero cumulant is F. Step 6: Faddeev-Popov ghosts

the second-order one. We do not need to make any more ) . ) ) )
specific assumptions about the functional realization of the W& mentioned previously that the Jacobian determinant is
noise: the noise mightfor instance be white, power-law, often (not always field-independent. This is a consequence
colored, pink, 1f noise, or shot noise, and our considerations®f the causal structure of the theory as embodied in the fact

below apply to all of these cases. As long as the noise {12t We are only interested netardedGreen functions. The
Gaussian, its probability distribution can be written as S|tuat|on_ here is in marked contrast with that in QFT where
the relativistic nature of the theory forces the us&eynman

Green functions {ie prescription. As we explain in Ap-

Ply]l= — pendix A, this change radically alters the behavior of the
Vde(27G,) functional determinant.
In order to avoid too many special cases, and to have a
xex;{ - %f f dx dy n(x)Ggl(x,y) 7n(y)|. formalism that can handle both constant and field-dependent

Jacobian factors, we exponentiate the determinant via the
(33) introduction of a pair of Faddeev-Popov ghost fidlis,19],
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SF term F[ ¢] as the perturbation and expand around the free-
JEde< D- %> field theory defined by setting=0. With this convention
the free action is, explicitly,
- J(D[*])p(lfT[D 51) 1 1
= .glexg — = - —1g/,
de(21) 9.9 2) 9 569 sﬂeezf f ‘§[D¢]G;1[D¢]]dx dy+J Eg*Dg]dx.
(36) (39

wherel is the identity operator on spacetime. Théeld isa ~ There are two particle propagators in this free action, one for
so-called(comple® scalar ghost field. It is a field of anti- the ¢ field, and two for the ghost fields. Formally,
commuting complex variables and behaves in a manner simi-

- . . _rnte-1n1-1_rp-1 ty—1
lar to an ordinary scalar field except that there is an extra Gyy=[D'G, D] "=[D "G,(D) 7], (39
minus sign for each ghost loop. We also need to use the T
conjugateghost fieldg" to handle the determinant. Gytg=[D] (40)

We should point out that if the operatdr—(F/5¢) is HereD' is the adjoint operator db, defined by partial inte-

self-adjoint, then7=7". In this case\ 77" reduces td.J| . . . =5 + =5
_| 7t L gration.(For instance, iD=d,— vV*<, thenD "= —¢,— vV~
|77]. In QFTSs the relevant operators occurring in the Jaco In the interests of generality, we reiterate the fact that we

bian determinants are obtained from second functional dehave not assumed translation invariance for the nés
rivatives of the action and are automatically self-adjoint. In . : \ Gae
though the noise is now GaussjanThe momentum-

contrast, for SPDEs there is no guarantee tiat frequency representation for the propagators is
—(6F/d¢) be self-adjoint, and in fact for the examples pre- q yrep propag

viously discusse@KPZ, reaction-diffusion-decay, and purely G (K, 'IZZ ©y)
n\K1,01,K2,

dissipative this operator is not self-adjoint. Instead we rely G¢¢(E1,w1;|zz,wz): - — . (4D
on the much weaker property that the operatbr D¥(ky,@1)D(ky,w,)
—(8F18¢) is real in order to write 77 = VIT* =|J]. In
all cases we are interested in, the relevant operators are not _
only real, but positive, so that the absolute value symbol can Gytylk,w)= D(K,w) (42
be ignored and the characteristic functional equat®4 is '
given by The Feynman vertices come from the interaction piece of the
action, which in this convention is
1
Z[J]= ———— (D¢)(Dg)(Dg’
1] \/de((ZW)EG,}]f (DE)DA)DY') Sinteraction:f J [_[Dd’]G;lF[d’]

oF

_1 _ -1 — 1 1
g)exp{f\hﬁ). (37 (43

« 1J’ f b oF
exg — % g 5%

The nature of the vertice@btained by functional differen-
This procedure trades off the functional determinants for twdiation with respect to the fields present in the theatg-
extra functional integrals. The advantage of this procedur@®ends on the structure of the forcing tefifig]. In the mean
becomes clear when one develops the perturbation theorjme we formally assert
[This Faddeev-Popov trick for exponentiating the Jacobian
determinant is also essential in finding the hidden Becchi-

_ D(Ky, 1) ¢F[¢]

Rouet-Stora-TyutinBRST) supersymmetry. ¢~ FlLo] vertex: G, (Ky,wp:Kyywy) (44
. . . . n 1, W1,"R2,W2
It must be noted that neither pair of ghost field variables
couples to an external source. This means they can only ap- 1 Elb1E
o e . : _ [¢]F[ o]
pear in internal lines in Feynman diagrams, a fact that willbe  F[ ¢]—F[ ¢] vertex: + = — — ,
used later on when we discuss loops and loop counting. 2 .G, (ky, 01Ky, @)
In Appendix A, we take a closer look at the Jacobian (45
functional determinant, its causal structure, and its specific
fqrm for local driving forces. In the_latter part of this Appen- ghost vertex: _ Eg* SF[¢] (46)
dix, we make use of the perturbation theory based on Feyn- 2 o

man diagrams to evaluate this functional determinant from ) ) ]
another perspective. Note that to turn these schematic Feynman rules into practi-

cal computational tools, we will need to assume thap] is
some specific local functional of the fielg (typically a
polynomial or polynomial with derivativesWhen we define
With the partition function in the form given abovwith  the effective action, we will again see that the formalism can
two independent ghostsit is now easy to develop a formal be successfully developed even for non-translation-invariant
Feynman diagram expansion. We wish to treat the drivingoise, and this derivation of the Feynman rules matches the

G. Step 7: Feynman rules
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generality of the definition of the effective action. This con- def
cludes, for now, the most general aspects of the discussion. G, (X,y)=Aga(X,y). (52)
When it comes to actual calculations in specific models,

the majority of these models have noise that is not only=or the case of Gaussian white noise, this is automatically
Gaussian but is also translation invariant. In the interests ofatisfied by the definitiorG ,(x,y) —A8(x—y). For more
simplicity, we now (finally, and only for the rest of this general Gaussian noiséwhich describe, for instance, the
particular sectionindicate the effects of assuming transla- effects of small scale degrees of freedom not fully decoupled
tion invariance for the noise. This lets us take simple Fouriefgm the physics ofp, such as in the case of a heat bath into
t{anfforms in the difference variable-y (more precisely, \hich ¢ has been immersgdthis form of the two-point
x—y andt,—t,) to see that in momentum-frequency space function allows the interpretation of the noise intensityas

a characterization of the bath-system coupling. This will be-
G,?(Iz,w) Gn(IZ,w) come more evident when we compare the “effective poten-

G</>¢(|Z,w): e R = R tial” in noisy environments, Eq(72) below, with the same
D(k,@)D(k,w) D(—k,—a))D(k,w)(47) object for zero-temperature quantum field theory, &@).
The normalization of the shape functi@a(x,y) is essen-
1 tially arbitrary, and any convenient normalization will suf-
" fice.
Gytg(k,w)= ———. 48 - . .
ol(K.) D(k, ) “8) Another advantage of singling out the intensity parameter

A is that it is the loop-counting parameter for this formula-
The Feynman diagram vertices are now énd g are here tion of SPDEs. To see this, one starts by writing the charac-

understood to be Fourier transformed teristic functional(with external sources rescaled for conve-
nienceg as
d—F[4] vertex:  — —D“;’w();F)[‘M, (49) L T
® 7=
7 [J] de[(277)3G,,]J (D¢)(Dg)(Dg")
. 1 F[o]F[¢] Do—F “YDH—E
Fl¢]—F[ 4] vertex: + E—Gn(lz,w) , (50 Xexy{ _ %f J' (D¢ [(15])9; (D& [¢D)
N oF [J¢
ghostvertex:  — %g* 52[;] g. (52) XeXF{ - Ef QT{D— 56 Q)GXI{ 7) : (53

As always, there is a certain amount of freedom in writingThe generating functiotHelmholtz free energy in statistical

down the Feynman rules. It is always possible to take part ofield theory for connected correlation functions is defined by

the quadratic piece in the total action and move it from the

free action to the interaction term or vice versa. We have W[J]=+A{InZ[J]-InZ[O]}. (54)

already seen that a linear terfa.g., vm?¢) in the forcing

function F[ ¢] can with equal facility be reassigned to the The effective action(Gibbs free energy in statistical field

differential operatoD via the scheméD —D —vm? F[ ¢] theory is then definechonperturbativelyin terms of W[ J]

—F[¢]—vm?¢. This procedure can always be used to com-by taking its Legendre transfori20,24],

pletely eliminate any linear term iR[ ¢»]. Similar but more

complicated behavior occurs if the forcing function contains SW[J]

both constant and quadratic piedesy.,a+b¢?). With the I'[ ;o= —W[J]Jff $J, 55 ¢

conventions given above, the interaction term contdats

leas) a “cosmological constant,’%aszG;1(x,y)dx dy, a T &

quadratic pieceab/ G, *(x,y) ¢*(y)dx dy, and a¢* inter- M:J_

action. The quadratic piece could be moved into the free o¢

action at the cost of making the expression for the free

propagator a little more complicated. This freedom in writing Here ¢, is some suitable backgrourithean field, which is

down the Feynman rules does not imply any ambiguity in théaken to be the stochastic expectation valugbah the ab-

physical results: Moving quadratic pieces around from thesence of external source3=0. It is often but not always

interaction term to the free action will modify the Feynman zero, and we retain it for generality.

rules but will not affect any physical quantities. The previous equation defines the nonperturbative effec-

tive action. For any specific example the previous equation is

not very useful, and we often have to restrict ourselves to a

perturbative calculation of the effective action, after singling
In order to set up the formalism for the effective action, out an expansion parameter. One can always develop a Feyn-

and its loop expansion, it is useful to first separate the twoman diagram expansion provided that the classical action can

point function for the noise into ahape g,(X,y), and a be separated into a “quadratic piece” and an “interacting

constantamplitude A, via the correspondence term,” as we have already done.

(59

IV. EFFECTIVE ACTION: LOOP EXPANSION
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In the loop expansion the sum of all connected diagramgroving the all-orders renormalizability of the theo(iProv-
coupled to external sourcd¢x) is exactlyW[J] as defined ing one-loop renormalizability for specific theories is not too
above, and the effective actidi{ ¢;¢,] corresponds to all difficult, and we will address this issue in a pair of compan-
(amputatejl one-particle irreducible graph€lPl), that is, ion paperg30,31.)

Feynman diagrams that cannot be made disconnected by cut- In analogy with the situation in QFT, one has three pos-
ting only one propagator. sible responses to this state of affairs.

In the following argument, we will be considering dia- (i) Use the MSR formalism for all calculations. This is
grams contributing to the effective action. Recall that ghost€omparable to using BRST-invariant versions of the standard
can only appear as internal lines, since they are not couple@iodel of particle physics to calculate scattering cross sec-
to external sources. tions and decay ratgThat is, overkil).

To see the role of the amplitudd as a loop-counting (ii) One could appeal to the fact that the SPDEs consid-
parameter, note that each field propagator is proportional tgred in this paper are hardly likely to be thought of as fun-
A while each ghost propagator is independentbfThe  damental theories in the particle physics sense; these SPDEs
vertices that do not include ghosts are proportionafifo!, ~ are much more like “effective field theories,” in that the
while ghost vertices are independent.¢f Thus each Feyn- hoise and fluctuations in real physical systems are manifes-
man diagram contributing to the effective action is propor-tations of our lack of knowledge of the short-distance phys-
tional toA's~Ve, wherel , is the number of nonghost propa- ics. Viewed as effective theories, renormalizability is no
gators andV,, is the number of nonghost vertices. But eachlonger the main guiding light it was once thought to[2e).
ghost vertex is attached to exactly two ghost propagators (iii) At a verypracticallevel one can choose to be guided
(except for tadpole ghost loopsand each ghost propagator PY experience Wlth_qugntum field 'ghgorles. It is we!l known
is attached to exactly two ghost verticescept for tadpole that one-loop physics is often sufficient for extracting most
ghost loops In the case of tadpole ghost loops, exactly oneof the physical information from a system. Calculations be-
propagator is attached to exactly one ghost vertex. This im¥ond one-loop, while certainly important at a fundamental
plies that if one assigns a facter to each ghost propagator !€vel, are often more than is really needed. One of the great
and a factor ofA~! to each ghost loop, then one will not techmcal simplifications of Qne—loop phyS|cs is that, via zeta
change the total number of factors.dfassigned to the Feyn- function technology, essentially any field theory can be regu-
man diagram. Thus the Feynman diagrams are proportionéized at one loop without excessive complicatiph3—53.

to A"V, wherel is the total number ofinterna) propagators For these reasons we will now restrict our attention to a
in the Feynman diagram andis the total number of verti- ©One-loop calculatioriapart from the discussion of Feynman
ces, now including ghosts. diagrams and the loop expansion, everything up to this point

It is the result of a standard topological theorem that forhas been valid nonperturbatively, while those discussions
any graph(not just any Feynman diagram—V=L—1 were still valid to all orders in perturbation thegnn the
wherelL is the number of loopEL9,21,43. It is then easy 1{0 next section we calculate the one-loop effective action.
see that field theories based on SPDEs exhibit exactly the

same loop-counting properties as QFTs except that the loop- V. EFFECTIVE ACTION: ONE LOOP
counting parameter is now tremplitudeof the noise two-
point function (instead of Planck’s constart). The only It is well known that the effective action for a field theory

subtle part of the argument has been in dealing with th&an be obtained by performing a Legendre transform on the
Faddeev-Popov ghosts, and it is important to realize that thi®garithm of the characteristic functionglartition function.
argument is completely independent of the details of the difWriting
ferential operatorD and the forcing ternF[ ¢]. When it

comes to calculating the diagrams contributing to the effec- =S[o1+[I¢
tive action, the extra explicit factor od inserted in the defi- Z[J]= f D¢ ex% —)
nition of W[ J] above guarantees that the 1Pl graphs contrib-

ute to I'[¢; o] with a weight that is exactlyA-. This _ . .
demonstrates thatl is abona fideexpansion parameter. wherea is the parameter characterizing the fluctuations, one

At this point, it becomes natural to make a comparisond€ts for the one-loop effective actidfirst order ina)
with the MSR(Martin-Siggia-Rosgformalism for the calcu-

a (56)

lation of the effective action in stochastic field theories, L[ ¢; dol=S[¢]—S[ Po]+ 3a{lnde(S,[ ¢])
where one introduces a fieldonjugateto ¢. Historically, 5
this conjugate field first arose in setting up a variational ap- ~Inde(S;[ ¢o])}+0(a%). (57)

proach to the diffusion equatiofcf. Morse and Feshbach

[27]). The following remarks will help one to understand the Here S,= 5281 5¢(x) 5¢(y) is the matrix of second-order
differences and the complementarity of our approach to théunctional derivatives of the actiof§[ ¢] (often called the
MSR approach; the bottom line is related to technical issuedacobi field operatdr For QFT the loop-counting parameter
associated with proving all-orders renormalizability a is Planck’s constant, and S, is a second-order partial
[1,12,18. The direct approach developed in this paper isdifferential operator that depends on the figbdvia some
akin to the ghost-free axial gauge of QCD or the so-calledpotential-like term. The determinants of partial differential
unitary gauge in the standard model of particle physics: Thi®perators can be defined and calculated by a variety of tech-
is a formalism well-adapted to isolating the physical degreesiques. The notationS[ ¢,] is actually shorthand for

of freedom, at least perturbatively, but is not well-adapted taS[(#[J=0])], and for a symmetric ground state
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((#[J=0])=0) one often hasS|0]=0. These terms con- . SFT 1 6F

tribute a constant offset to the effective action. In QFT these Sl ¢]=|{ D'~ e 9,7\ b~ 5¢

terms are interpreted as a field-independent contribution to 5

the vacuum energy and are traditionally ignored, although in —(Do—F[$])g; " o°F 62)
the context of cosmology they contribu¢eometimes cata- 92 SpSd’

strophically to the cosmological constant. In the interest of

generality we will make them explicit. When we consider Putting all this together gives the following one-loop result
field theories based on SPDEs, the loop-counting parametder the effective action:

a becomesA, which we singled out as the amplitude for the

noise, and the bare action in E§3) is replaced by Eqg34)
and (37),

S[¢]—>%J j{<D¢—F[¢]>ggl<D¢—F[¢]>}

R R 1
x d9 dt dy dt’—zA(In J+Ingh (58

1
= Stlassical 1~ EA( In 7+1In jT)v (59

where on the second line we have denotedSssicd ¢ ]

the double integral in the previous line. This is the quantity

that we have previously defined as the nonlinear generaliz

tion of the Onsager-Machlup action to arbitrary Gaussian

noise[52].
The noise at this stage is Gaussian, and does not need

be translation invariant. We have explicitly kept the Jacobian

functional determinant. Inserting E¢69) into the formula
for the one-loop effective actiofEq. (57)], we obtain the
following general resultapplicable to any SPDE

I'[ ¢; d0]= Sciassical 1~ Sciassical Pol

1 1
+A| 5IndetS[ ¢]) — 5Indet Syl ¢o))

1| 1| + 1|
5 nj[¢]_§ﬂj[¢]+§ﬂj[¢o]

1
+5In T ol +O(A?).

5 (60

To make this more explicit, the fluctuation operator
S,(¢) (also known as the Jacobi field operats

oF

aleo- 5l
P 5% P 5
2

., FF

Sol ] :(

(61)

Here the— indicates that these operators should be thought

of as acting to the left. Alsgz’l(x,y) is to be understood as
a “matrix” with implicit sums over the indicex,y (i.e.,
integrations over the variablgNote that ifF[ ¢], contains
derivatives of¢, thensF/5¢ will be a differential operator.
Performing an integration by parts, this can be converted to

a_

Moigol- 1 [ aatayarios-riong;*

1
X(D¢=F[4])}~ AN T+In ")

L (T 5FT) B 5F)
+§An et|D —5—¢ g, D—%
_, OF
—(¢— o) + O(A?). (63

Grouping together the terms proportionaldg and using the
representation of the functional determinant, enables us to
rewrite the above in the alternative form

gf f dix dtdy dt'{(Dp—F[4])g,*

X(Dé—F[¢])}
SF.\ 7t
DT_%T) gZ(D_

ans |
<)

I &, dol=

oF

_)‘1

o¢

)
(Dop—F[o])g; "

x 5hod

—(¢— o)+ O(A?). (64)

This expression for the one-loop effective action is instruc-
tive. It is made up of two contributions whose origin and
physics are quite different. On the one hand, the first term
(the generalized Onsager-Machlup teigives a contribution
whose form is directly related to both the nosteape factor
and the non-noisy part of the equation of motion, including
nonlinearities. On the other hand, the log-determinant term is
proportional to the noisamplitude(which we have seen is
the loop-expansion parametemnd its specific form depends
alsoon the structures db andF[ ¢], as well as on proper-
ties of the noise shape function. Therefore, noise plays a
central role in the physics of the SPDE and, as will be dis-
cussed below, particularly in the nature of the ground state of
the stochastic system described by EL).

VI. EFFECTIVE POTENTIAL: ONE LOOP

We now concentrate on field configurations that are ho-
mogeneous and static. For such field configurations the ef-
fective action reduces to a quantity known as the “effective
potential.” In this section we willcalculate the effective

statement about the adjoint operator acting to the right, i.epotential, deferring the discussion of its physigakrpreta-

we can rewriteS,;[ ¢] as

tion (in the context of SPDBEg0 the next section.
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The effective potential is defined as
I'[é; dol
Q ’

V¢ bol= (65)

with ¢ a homogeneous and static field configuration, énd

the volume of spacetime. The effective potential at one loop

is given by

) 1, 0z 4 1A oF
V[¢,¢>O]=§F [&] fdxdtg2 —Eﬁlnde D_%

1A ( ; 5FT)
—Eﬁlnde D —%
naef |01 55 o2 - )
+§§n et| D —g d, D—%
-] &°F
+F[¢]{fddxdtgzl]5¢5¢}
—(¢p— o) +O(A?). (66)

In order to turn this into a more tractable expression, it is

DAVID HOCHBERG et al.

PRE 60

+1Af dkdo (DT(E a))—ﬁ)

2 (2m)d+1 ' EY)
L . F

X35 (k,w)(D(k,w)—%)

5°F ~—1C_ A
5¢5¢)gz (k=0,0=0)

—(¢— o) +O(A?).

+F[¢]

(69

(Note thatg, plays two rather different roles aboy&Ve
now adopt the simplifyingconventionthat

f dixdtg, }(x,t)=1=0, 1 (k=0,0=0).  (70)

This is only aconventionnot an additional restriction on the
noise, since it only serves to give an absolute meaning to the
normalization of the amplitudel.

With these conventions, the one-loop effective potential

useful to introduce a frequency-momentum representatiorfan be written as

First notice that

d%deo ..o
oyid e (ke

f dixdtg, }(x,t)= f

xexg —i(wt—Kk-x)]
=09, '(k=0,0=0). (67)

[It is clear from the formula for the one-loop effective po-
tential equation66) that the above integral has to be finite,

or rendered finite by appropriate renormalizations of the

noise correlation function and the parameters it conthins.
We next make use of the following identity valid for a
translation invariant operatot:

|ndetx=f ddidtf ddﬁldwlf d9k,d (X, t| Ky, @1)

XIn X(lzlﬁwl)&d(ﬁl,izz) 5(w1,w2)<|22,w2|)2,'[>

d% dw R
Qf ﬁ'ﬂ X(k,w)

(27)

= (68)

Applying this to the one-loop effective potential yields

R e Y S
VI¢idol=5F1 4192 (k=0,0=0)

1 ddEdwl , SF
_EAI (27T)d+1n D( ,w)—5—¢

1 f ddIZde ot SF1
_EA (277)(”1“ ,w)—%

R TS| %K o o0k ar_ OF
VI¢idol=5F [d’]‘zAJW n| D( ,w)—%
1 [ d%de o ot SF1
_EAJ —(qu)d+l nl D ( ,w)—g
1 [ d%de ( - 5FT)
+§.Af (27T)d+l|n D (k,w)—w
- R SF 5°F
xg; “(k o) D(k,w)—5—¢ +F[¢]5¢5¢
—(p— o) +0O(A?), (71
which can be recast into
Lo 1AJ d de
VI¢idol=5F 1o+ 5 2mit
2
92(K,@)F[ ¢]
T Ew)—i)(D(E w)——)
D7 (k, EY ’ EY)
—(p— o) +0O(A?). (72

This formula is one of the central results of this paper. It
shows that noise-induced fluctuations modify the zero-loop
piece of the potential in a way which is reminiscent of the
situation in both statistical and quantum field theory. For
example, in QFT one hd{0,2]]



PRE 60 EFFECTIVE ACTION FOR STOCHASTIC PARTIA. .. 6353

1 d dew time averageof the field takes on specific value@ij) even
Vortl & dol=V(e) + Ehf i when the notion of physical energy is lacking, we will see
(2m) that there is a notion of quasienergy for SPDEs, with the
S2V quasienergy being a measure of the extent to which the sys-
tem has been driven away from its nonstochagiiro-nois¢
<inl 1+ Spod configuration; andiv) the one-loop effective action will be
w2 k2 m? demonstrated to describe tli@pproximaté probability for
an initial field configuration to evolve into some finah the
—(¢p— o) + O(#%). (73 asymptotic sensdfield configuration under the influence of

the stochastic noise.
We see in Eq(72) that the ground-state structure of the
SPDE (which we will soon see is obtained by minimizing A. Equations of motion in the presence of fluctuations
U ¢; do]) depends on both the noise correlations and the I . .
nonlinearities induced by the forcing term. We also see ex- If (IJ_ne mzkes; usefof thgt(_jeflnmor: of thetk(]afiecnve action
plicitly how the noise amplitude is essential in the competi-as a Legendre transform, It Is easy 1o see tha

tion between deterministic and stochastic effects. ST[ ;o]
The major difference between the effective potential for —'OzJ[¢], (74
SPDEs and QFT lies in the fact that for SPDEs the scalar 8¢

propagator of QFT is replaced with a propagator which has

more complex structure for the equivalent of the “mass”

term. This difference is due to the causal structure of SPDEs. (P[I])= . (75)
Notice also that for SPDEs one can naturally adapt the

noise to be both the source of fluctuaticarsd the regulator  In particular, by takingl=0,

to keep the Feynman diagram expansion finite. This follows

immediately by inspection of E¢72), which shows that the ST ¢ ¢ol

(momentum- and frequency-dependemtise shape function o¢

g, will affect the momentum and frequency behavior of the

one-loop integral. The finiteness, divergence structure, an

renormalizability of this integral will depend very much on

the functional form of,. It is thus clear that we can use the

noise shape function to regulate the integral, if we wish.

WhereJ[ 4] is that external current required in order that

=06 ¢=([I=0]). (76)

tationary points of the effective action occur at those
mean-field configurations which are zero-external-current
stochastic expectation values of the fluctuating fiéRtoof
of this may be found, for instance, on p. 65 of Weinberg
[20].) It is important to realize that one never needs to invoke
the notion of energy to obtain this result. The QFT interpre-
VII. INTERPRETATION tation of this result, which we now see extends to SPDEs, is
o ) ) ) that the effective action gives the equations of motion once
The physical interpretatiorof the effective action and the fluctuations(noise are taken into accountThis is a nonper-

effective potential for SPDEs is considerably more subtlgyrpative result, not limited to the one-loop approximation.
than that for the more usual QFTs. The situation is compli-

cated by the fact that for a completely general SPDE it may
not be meaningful to define a physical energy. Even when
the SPDE is sufficiently special so that some physical notion We have previously seen that the probability distribution
of energy may be defined, the system may be subject t&or the fluctuating field, considered as a function over space-
dissipation: Theohysicalenergy need not be conserved, eventime, to take on the valug(x,t) is given by the functional

in the absence of noise. Thus the effective action and effec-

tive potential for SPDEs are not related to the physical en- Pl¢]=P[Dé—F[]INIT". (77)
ergy. This means thaomeof the physical intuition built up ) ) .
from QFTs may be misleading and it becomes important td\OW Suppose we coarse-grain, by looking at the spacetime
reassess the notion of effective action and effective potenti@verage of the fields as defined by

to see how much survives in the SPDE context.

B. Probability distribution for the spacetime average field

The great virtue of the effective action and effective po- f o xro(x,t)dIx dt
tential in QFT is that they contain all the information regard- s (78)
ing the ground state of the system and its fluctuations: From QT '

a knowledge of the effective potential, one can ascertain un- ) - ) )

der what conditions the system will display one degree offnd ask what is the probability that this spacetime average
symmetry or another. It is essential that most of these proptake on a specific numerical valug? (For definiteness we
erties carry over to the case of SPDESs, otherwise the effeémpose periodic boundary conditions in sp&tgand timeT

tive action and effective potential would be mere mathematiand interpretQ) T as the volume of the spacetime box. This
cal constructs without physical relevance. Fortunately thénas the technical advantage that the partition functiiah] is

key features do in fact carry ovdi) the stationary points of then needed only for sourcdsthat are strictly independent
the effective action still correspond to stochastic expectationf space and timg.

values of the fields in the absence of an external curfént; The probability we are interested in is easily calculated to
the effective potential governs the probability that fpace-  be
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= . _ spacetime average of the field. We now go one step further:
PFOK{ JQ de xdtp(x,t)= ¢QST> We distinguish two concepts of “energy,” the “true physi-
s cal energy” and the “quasienergy,” and show that even if
R R _ the physical energy is undefinédr possibly not useful due
=f (De¢)PL¢] 5( f dx dt p(x,t) — ¢QST) (79 to dissipative effects the quasienergy is still a useful mea-
0T sure of the extent to which fluctuations modify the nonsto-
chastic equations of motion. We start from our general SPDE

:f(w)fd)\ Pl o] (1),

R o Doé=F[ o]+ 7, (85)
Xexpl(ixUQ ddxdt¢(x,t)—¢QsTD (80)
XT

and its nonstochastic version,
=f d\ Z[I(X)=iN]exp(—iAQT ¢). (81) Dé=F[]. (86)
We now take the limit ag);T becomes very large, and sometimes this nonstochastic partial differential equation
apply the method of stationary phase. By definition we haveyjj|| arise from some Lagrangian, often it will not.
. . Even if the PDE =F does not arise from a La-
21309 =i]=ex{0ST{AG0) VIS0 il 4] Oé=Flol)
82

grangian, the results of this paper demonstrate that it is al-
ways possible to assign a tree-level action to the stochastic

with the subsidiary condition system:
SV ;o] . 1
T Ly N ®9  Spsssear | [ axayDI-FL41; (DS-FLgD=0
. (87
It is easy to demonstrate that
. . _ This classical action is positive semidefinite, and has minima
Prot{ J dx dt ¢p(x,t) = ¢QST) (which are equal to zejaat field configurations that satisfy
QsxT the zero-noise equations of motion. This is most obvious for
V[$'¢ ] 1 white noise, when the action is a perfect square, but the
cexp —O.T 7% Lo ) 84 result is general. The noise two-point correlation function
T 0. 89
s [being an (infinite-dimensional covariance matrik is by

. : 4o e definition positive definite. Therefore, its inverse is also posi-
Thus the effective potential governs the probability distribu tive definite and similarly theinfinite-dimensional matrix

tion of the spacetime average of the fluctuating field. Minima__7 . . - . . .
of the effective potential correspond to maxima of the probJ2 ~ iS @ positive definite operator. Thus this classical action

ability density of the spacetime average field. The way weh€ generalized Onsager-Machlup actifsg]) is always
have set up the argument applies equally well to QFTs angréater than or equal to zero. .
SPDEs and makes no reference to the notion of physical 1he€ classical action thus measures the extent to which a
energy.(This result is nonperturbative but approximate—it is 9/Ven field configuration fails to satisfy the zero-noise equa-
not limited to one loop. If we take either the infinite volume tions of motion, the measure of the deviation being weighted
or infinite time limits, then with probability 1, the spacetime PY theshapeof the noise correlationgIn fact, if the ampli-
average field must equal one of the minima of the effectivdude A of the noise is set to zero, the action is identically

potential) equal to zerg.
We now define the quasienergy by

C. Action and quasienergy for SPDEs

Even though the physical energy may not be defined for 5[¢]=f Equad #1dt. (88)
arbitrary SPDEs, we nevertheless can demonstrate that there
always exists a positive-semidefinite functional of field con- ) ) . ]
figurations, the tree-level action, and a related “quasi-Ve justify calling this object the quasienergy by the fact that
energy,” whose minima correspond to maxima of the prob-!f we treat it as a Ham!l§onlan fu_nctlonal, and_put' the resylt—
ability distribution of field configurations. ing ot_)Ject into the partition function (_)f an equ_lllbrlum statis-
From the way the functional formalism has been set up:ucal flel_d theory,_we get the generating functlonal for all the
we can always define and calculate an effective action and a¢Prrelation functiongignoring ghost Jacobians for the mo-
effective potential even if the underlying nonstochastic vermend. Explicitly, we can write
sion of the partial differential equation does not arise from a
Lagrangian formulation. We have already seen that the ef- 1 42 d= .
fective action has a natural interpretation in terms of the Equas[¢]=§f f d*d% dt'(D¢—F[4])9,
equations of motion once fluctuations are taken into account,
and that the effective potential governs fluctuations in the X(Dp—F[d]). (89
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Note that the quasienergy depends both on the PDE and qurovided on pp. 72 and 73 of Weinbefg0]. Though that
the shape of the noise correlation function. If the amplitudeproof is phrased in a Lorentzian-signature QFT language, it
A of the noise is set to zero, this quasienergy is conservetkadily carries over to Euclidean-signature equilibrium statis-
and is exactly equal to zero. This quasienergy can be thouglitcal field theory. Once the physical energy is replaced by the
of as a nonlinear generalization of the Onsager-Machlumguasienergy, the proof can be extended to SPDEs as well.
“energy” to arbitrary Gaussian noise. The particular label We have been able to show that minima of the effective
one chooses to apply to this quantity is not important as longpotential also minimize the quasienergy, and therefore the
as one bears carefully in mind that this “energy” need notnoise-induced deviations from the zero-noise equations of
be the physical energy. motion.

If we now restrict ourselves to homogeneous and static
fields, and consider the effective potential as defined above, D. Transition probabilities
then by the procedures used in quantum and stochastic field . . i ,
theories, the effective potenti@hultiplied by the volume of What is the probability that a certain initial field configu-
spacg is the stochastic expectation value of the quasienerg§tion ¢;(x) at timet; evolves into a final field configuration
(Equad 1) in the presenceof the noise-induced fluctuations, ¢¢(x) at timet;? We have already developed the appropriate
and subject to the constraifw) = ¢. A proof of this resultis machinery to address this question. Indeed

Prob(¢hs(x), ty s ¢i(X), t;)o* f (D)PL ]Sl boordX:ti s 1) = A1) 18] bear Kot 3 7) = B1(X)]
* j (D)(DB)PL ]S poor Xt 7) = S]] (X, 1) = i ()18 b(X,tr) = by(X)]
x j (D7) (Dp)P[7]6D ¢~ F[ ]~ nINITT oL (x,t;) — $i(X) 18] p(X,ty) — bs(X)]
* j (D$)PID ¢~ F[SIINIT ol d(X.t) — ()18l p(X,t) — s(X)]
« [ (DYPLBIA Bt~ (D1 Bt~ )]
« | (Dg)exp(—STAANTT A 6G8) ~ SR D)~ ()]

o [N (D exp - ST ANTT 90

This is formally identical to the formula usually encoun- E. Summary

tered in equilibrium statistical field theory, and everything so  From the above, we see that the effective action and ef-

far is nonperturbatively correct. _ _ fective potential for SPDESs exhibit many of the key features
Now take a saddle-point approximation: Find an interpo-of the effective action and effective potential of QFTs. This

lating field ¢;(x,t) that minimizesS[¢] and interpolates is important because it guarantees that not only is it rela-

from ¢i(;) to ¢f(§)_ Perform the Gaussian integral about tively easy to calculate the (_)ne—loop effective potenti_al, but
the saddle point. Then by definition of the one-loop effective?!SC it is useful to do so: As is the case for QFTs, minima of
action the effective potential for SPDEs provide information about
expectation values of the fields. The effective action also
provides information about fluctuations in spacetime aver-
T ] a_ge_d fields, it gives informatio_n about _the noise—induced dg—
Prol ¢¢(X),t; :d)i()z).ti)*exﬁ{— _'“‘} (91)  Viations from the nonstochastic equations of motion, and it
A governs the transition probabilities whereby initial field con-
figurations evolve to final field configurations. Thus, both the
effective potential and the effective action are as useful for

This is only a one-loop result, but it demonstrates that theSPDEs as they are for QFTSs.
effective action for SPDEs inherits many of the important Furthermore, as demonstrated in recent work by Alex-

features of the effective action for QFTs. ander and Eyin{56-58, the effective potential is also a
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useful tool in a strong noise regime far from equilibrium. Defense(D.H. and J.P.M. In the USA, support was pro-
The major difference between those papers and our own forided by the U.S. Department of Ener¢®.M.P. and M.V).
malism is that they work within the MSR approach. They This research is supported in part by the Department of En-
also focus on strong noise regimes, while we emphasize thatrgy under Contract No. W-7405-ENG-36.M.P). Addi-
for many purposes a one-loop calculation is both computationally, M.V. wishes to acknowledge support from the
tionally efficient and quite sufficient to extract many key spanish Ministry of Education and Culture through the Sab-
features of the physics of the system. The two approaches aggytical Program, to recognize the kind hospitality provided
complementary, and where they overlap, they are in COMpy LAEFF (Laboratorio de Astréica Espacial y Bica
plete agreement. Fundamental, Madrid, Spainand to thank Victoria Univer-
sity (Te Whare Wananga o te Upoko ote lka a Maui; Well-
Vil DISCUSSION ington, New Zealandfor hospitality during final stages of

In this paper we have developed a general and powerfdflis work.
formalism applicable to arbitrary SPDEs. We have shown
how to convertarbitrary correlation functions associated APPENDIX A: JACOBIAN FUNCTIONAL DETERMINANT
with arbitrary SPDES into functional integral§And for this
first step the noise does not have to be Gaussior. Gauss- The Jacobian functional determinant is oftgmt not al-
ian noise(not necessarily translation invariante have car- ways field independent, and can oftébut not always be
ried the formalism further, setting up the basic ingredientdiscarded. In this appendix we explore this issue in more
needed for Feynman diagram expansions with the noise angletail.
plitude serving as the loop-counting parameter, and defining
a nonperturbative effective action in analogy with QFT.

We hope to have convinced the reader that the “direct
approach” developed in this paper is both useful and This discussion is a generalization of Rivg2d], pp. 155
complementary to the more traditional MSR formalismand 156. There are also relevant comments in De Dominicis
[1,12,19. Some questions can more profitably be asked andnd Peliti[12], Appendix B, part C(pp. 370 and 371 See
answered in this “direct” formalism. For instance, the fact also the footnote on p. 214 of Fris¢8], and the discussion
that the noise amplitude is the loop-counting parameter in Zinn-Justin(pp. 372 and 37315]). We are interested in
easy to establish in this “direct” formalism, but appears to evaluating
have no analog result in the MSR formalism. The effective
action gives rise naturally to the concept of an effective po- oF
tential, a powerful construct well known and studied within jEde( D- 5_¢,)
the QFT context, where it serves to classify and compute

ground states and allows one to investigate symmetry proprg proceed, we make some specific assumptions about the
erties and patterns of symmetry breakigth SPONtaNeous ¢, of D, Let us confine attentions to the class of differen-
and dynamig An analogous construct can also be deflnedtial operators

and calculated for stochastic field theories based on SPDES,

1. Causality: Retarded Green functions

(A1)

and we have done so in this work. However, for arbitrary n
SPDEs, such as those contemplated here, the notion of D E——Do(ﬁ). (A2)
ground state and effective potential must be approached with oot

extra care and their physical interpretation clarified. We have
taken pains to do so, establishing that the minimum of thgf we takeD,= V2, thenD, is the diffusion operator while

construct we call the effective potential corresponds to solvp_ s the wave operator, so this class of differential operators
ing the full equations of motioffor homogeneous and static is’sjll broad enough to cover almost everything of physical
field configurationsin the presence of noise. interest) Now write

We feel that the most interesting result of this analysis is
a general formula for the one-loop effective potentialday SE
SPDEs subject to translation-invariant Gaussian noise. This jnzde< ap—Do— —> (A3)
is still an extremely broad class of problems, and in a pair of o
companion papers we will specialize this analysis to two
particular cases. First, we discuss the noisy Burgers equation
(KPZ equation, where the effective potential approach im-
mediately leads us to such interesting observations as the
existence of dynamical symmetry breakif@SB) and the
Coleman-Weinberg mechanig®1]. Second, we discuss the =de{d;)exp Tr Ir{l -G,
reaction-diffusion-decay system, and explicitly calculate the
renormalized effective potential for one, two, and three spa-
tial dimensiong30]. These are issues that are extremely dif- N ” 1
ficult to address using the MSR approach. =del(d;)ex _mZzl Tr(a Gy

Do+

il
— (Ad)

=de’((9{‘)de{l—Gn 54

o, oF
° 5

} (A5)

[}

(A6)

b oF
o+%
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(t_t/)n—l

Gn(t,t’)zwe)(t—t,). (A?)

One can easily check that this is a Green function by com-

puting, forn>1,

(t_t/)n—Z

dGp(t,t")= =21

O(t—t")=G,_4(t,t"), (A8)

and noting that

2,G(t,t)=8(t—t). (A9)
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(GAt,t")= f dt Gy(t,1)Gy(t,t") (A15)
=f dtO(t—t)O(t—t') (A16)
=(t—t")O(t—t’). (A17)

Thus tr(G;]?) =0, and it is easy to show that fom
>1, (G))"=G,, so that tr{G;]™ =0. The only term that
survives is trG;) =0 (0). But®(0) is ill-defined and must
be specified by some particular prescription. The prescription
which is most useful in this context is the symmetric one

Finally, the retarded nature of the Green function is due tgvherein®(0) is nonzero and equas This may be justified

the presence of the Heaviside step function.

The traces Tr in the formula for the Jacobigh are
spacetime traces. We may write this as=Timetrspace and
concentratéfor now) only on the trace over timef.. For
n>1 it is easy to see that;tf(G,) =0, and in fact that for

all m>0, tr([G,]™ =0. To generalize this argument to
the spacetime trace, we need to make the assumption th

F[¢(>Z,t)] does not explicitly contain any time derivatives.

If this is the case, we can write

SFLH(X,1)] _

SFLp(X,1)]
Se(y,t') '

= A10
5o(y.t) (A0

S(t—t)

This now implies that for the spacetime tracex(1;m>0),

i

oF
Tr([Gn[DOJr 5[;]}

(A11)

Thus the retarded nature of the Green function causes all the

by a limiting procedure as described, for example, in the text
by Zinn-Justin15] (Chap. 4, pp. 69 and J0This symmetric
prescription is equivalent to adopting tB&atonovich calcu-
lus for stochastic equations. Choosiif0)=0 is equivalent
to thelto calculus The Ito calculus simplifies the Jacobian
determinanito unity) at the cost of destroying equivariance
upder field redefinitiongthe Ito calculus explicitly breaks
coordinate invariance in field spac&ee, for instance, Eyink
[56] or Zinn-Justin[15]. We will stick with the symmetric
prescription (Stratonovich calculysfor this paper, though
suitable modifications for the Ito calculus are straightforward
if at times tricky (the loss of reparametrization invariance
under field redefinitions implies that all arguments involving
a change of variables must be carefully reassgssed

Now for n=1 only one of the trace terms in the func-
tional determinant survives and we hageith the assump-
tion thatF[ ¢] contains no time derivatives

SF[p(x)]]

o SFLe(xD)]
L ab(y)

Tr G -
og(y,t)

1

trace terms to vanish and we have the exact result that for

n>1 andF[ ¢] not containing time derivatives

SF
ande( I —Doy— ) (A12)

5

=det(d}). (A13)

SFLp(x,1)]
S¢(y,)

=®(0)f dttrs%

SFLp(X,1)]

=0(0)Tr =
op(y,t)

(A18)

This means that the functional determinant is simply a field-TNiS implies
independent constant. It is therefore irrelevant and may be

discarded(In particular, forn=2, the stochastic wave equa- Ji=del 9,—Dy— SoF
tion, one never has to evaluate the functional determinpant’* t -0

[Note: This argument also works provided-1+ (the high-
est order of time derivatives occurring F[ ¢]). Proving
this is an easy exercigeThe partition function(characteris-
tic functiona) is now, forn>1,

Z[J]«f(wexp[—%f f (Dnp—F[¢])G,*

od 3

Forn=1 the situation is almost as good. First note that

(Al14)

X(Dnp—F[4])

56 (A19)
SFL(X)]

Do+ -
op(y)

= det at)exp{ —0(0)Tr } (A20)

=det d,)exp{— 3 Tr[DO]}eprl - %Tr

5F[¢®]H
so(y) |
(A21)

The first two factors in the last line are field independent and
so may be discarded with the result that
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1
J1xex —ETr

The partition function(characteristic functionalis now

SFL#(x)]
S¢(y)

] 3. Jacobian functional determinant via Feynman diagrams

(A22) Let us now suppose th&t=D,, as discussed in the first
section of this Appendix. Thel (K, )= (—iw)"—Dy(K)
and the ghost propagator is

1

St o —ou )

1 (A27)
Z[J]“f (D¢>)exr{—§f f(chb—F[qﬁ])
where the retarded nature of the Green function now implies
><G,71(D1¢—F[¢])} (A23) that all poles in thew plane occur in the lower half of this

plane. For each ghost lodpssuming=[ ¢»] contains no time
1T
xXexp — ST
m )
(2mT ] {L-i(0— o))"= Do(K—kp}

derivatives we must perform an integral over both fre-
quency and momenta of the type

This means that for stochastic differential equations that are (A29)

first order in time, the functional determinant must be kept.

SFLH(X)] exp( J M)
‘ dw d% P(K,k;)
There are specific choices of the nonlinear driving termwhere all the pole¢in ) lie in the lower half-plane and the

S¢(y)

wey  T=]

n

F[¢] that lead to even further simplifications. w; andk; are linear combinations of the momenta flowing
into the ghost loop[The functionP(k,k;) is some possibly
2. Jacobian functional determinant for local driving forces complicated function of the momenta, typically a polyno-

. . . mial, derived froméF/é¢. There is also a set of external
.Su.ppo.se thak] $(x)] |s.alocal functlonall of the»fleldgb. legs (derived from 6F/8¢) attached to each vertex of the
This implies that there exists a local functigi{$,V) such  ghost Ioop, but we do not need to know the detailed structure

that of these vertices to derive the expression abpve.
- Since all the poles are known to lie in the lower half-
5F[¢£X’t)] =f(¢(§,t),§)5(t—t’)5(>?—)7). (A25) _plane, the contour of integ_ration can be pushed ouF to infinity
Sp(y,t") in the upper half-plane via the replacement> w+iA (A
>0), without changing the value of the integral. Thus we

Evaluating the functional determinant now gives can write

o do d% P(K,k;)

n

Jzexp(—ifsd(é)f dtddif) (A26) n -
2 ' (@mT ] {I-i(0—0) = A]"=Do(k—k)}

Insofar as we trust the formal resut(0)=0 (see, for ex- vV A>0. (A29)
ample,[15]) we can discard the functional determinant as an o

irrelevant constant. This formal result is a somewhat contenNoW take the limitA — + <o to deduceZ ,"=0.

tious issue, and we have found that it is often more useful The only place that this argument fails is when e
and safer to either prove that the Jacobian is a fieldintegral does not converge. This happens onlynferl (first
independent constarfB1] or to carry the Jacobian along for order in timg¢ andm=1 (tadpole diagram in which case we

the whole calculatiofi30]. need to consider

For more general driving ternis[ ¢] one must keep the P
functional determinant. Nevertheless it is clear that for large 1EJ do d°k P(k) (A30)
classes of stochastic partial differential equations, including ! 2m3 Y —iw—DyK)}

many of the most important and interesting cases, the Jaco-
bian can be safely ignored. This already reproduces the key results of the preceding sec-
For differential operator® that are not of the fornD,  tion: The functional determinant can be ignoredrfior1 and
discussed above, or driving forcEsmore complicated than for n=1 it collapses to a single term. Performing the
those discussed above, one has to use other means of evailokegral for this remaining term, we see
ating the functional determinant. 5
For the noisy Burgers equatigqiKkPZ system, the func- 1 ) ) . tes
tional determinant can be shown to be a field-independent Ir= f W' IN[—iw—Do(k)]lg=22  (A31)
constant that can be discarded. A proof of this will be pro-
vided in [31]. For the reaction-diffusion-decay system, on d9k
the other hand, we find it more convenient to explicitly keep = f —i(im (A32)
the Jacobian determinaf20]. (27)d+t
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4 —(6F18¢)T is nonsingular, this does not change anything. If
Jd k DT—(8F/8¢)" is singular, this procedure provides a pre-
3 (A33) scription for defining a unique solution to the zero-loop
(2m) equations.
The above complication is not peculiar to SPDEs and
_ 5d(5)_ (A34) their associated nonquantum field theories; the same sort of
behavior also occurs in ordinary QFTs. For example, in

. QED, J=0 corresponds to arbitrary constant electromagnetic
We conclude, then, that the tadpole ghost diagram exactlye|q '|n order to assure that=0 has the unique solution

reproduces the exp-3Tr(F/ 5¢)) obtained by other means £_ g the easiest thing to do is to add a small photon mass.
in the first section of this Appendix. In fact, Faddeev-Popov

ghost techniques are in complete agreement with direct cal-
culations of the functional determinant. This ghost-based
analysis also makes clear why things are different in QFT. If SupposeDT— (8F/84)T is nonsingular. Then the zero-
one uses the Feynman propagator instead of the retarddabp equations of motion fo¥=0 are equivalent to the clas-
propagator, there are poles on both sides of the real line arglcal equation® ¢—F[ ¢]=0. The effective action at zero-

2. A vanishing theorem

one cannot push the path of integration outttgee. loop order, evaluated on solutions of the zero-loop equations
of motion, is exactly zero.
APPENDIX B: EQUATIONS OF MOTION In fact, the one-loop effective action evaluated on solu-
IN THE PRESENCE OF NOISE tions of the zero-loop equations of motion is also exactly
) zero. This happens due to the explicit occurrenceD@f

1. Effect of adding a small decay term —F[¢] in the one-loop contribution to the effective action

We start with the zero-loop equations of motion for the[see Eqs(63) or (64)], so that for solutions of the zero-loop
SPDE, equations of motion there is an exact cancellation between

. the Jacobian and the quStuation opgzﬁ@r

y_oF 1 _ _ On the other hand, D' (5F/8¢)" is singular, just per-

D ¢ ) f g2 (Do=FLoD)=J. BD turb the system with a small amount efdecay. The previ-

ous argument goes through fer 0 [technically as long as

In particular, for zero external sourcd<0) any solution of s not an eigenvalue dd'— (5F/5¢)']. Taking the limite

the nonstochastic bare equations of motibp—F[¢]=0, 0 justifies the extension of the vanishing result to the sin-

is also a solution of the zero-loop equations of moti@ero  gular case.

loops almost correspond to setting the noise amplitude to  Now consider solutions of the one-loop equations of mo-

zero and reducing the SPDE to its nonstochastic anag.  tion. These one-loop equations of motion are of the form

there is a risk that the zero-loop equations may hange :

solutions than the nonstochastic bare equations. This poten- oF _

tial problem arises if the operat®'— (5F/5¢)" is singular ( D' 5_¢+ €l |g; (D—F[4]+eh)=0(A),

[so that it has a nontrivial null spackerne)]. If this opera- (B4)

tor is singular, then there will be many different fiekﬂs)?,t)

that correspond to a gived, making the whole Legendre

transform procedure invalid. X
The best way to fix this is to add a small decay term in the/S

system and then take the limit as the decay term vanishe§!

Specifically, take

with the right-hand side being a complicated expression.
Nevertheless, we do not need to know exactly what this term
to deduce that evaluated at solutions of these equations of
otion I'[ ¢psoi] =0+ O(A?).
This vanishing of the effective action at solutions of the
one-loop equations of motion provides a useful consistency
Fl¢]—F[d]—€o. (B2)  check on specific calculations. The underlying reason for this
vanishing theorem is most easily addressed in the MSR for-
This perturbed system has zero-loop equations given by malism. In fact, it can be shown that

Df 5FT+ [
— = " TE€E
o¢p

f951(D¢—F[¢]+6¢)=J- (B3) I'[;bol= %J f{(Deﬁ¢_Feﬁ[¢])g£l

Even if DT—(8F/8¢)T is singular, the perturbed operator X(Deﬁ¢—Feﬁ[¢])}dd§dtdd)7dt’, (B5)
will not be, and so the perturbed equations of motion will

have a unique solutios,{(J,€). It is appropriate to take whereD s and F are some effective differential operator
the Legendre transform using this unique solution and conand effective driving force appropriate to the fully interact-
sider the limite—0 at the end of the calculation. BT  ing theory.
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