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Effective action for stochastic partial differential equations
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Stochastic partial differential equations~SPDEs! are the basic tool for modeling systems where noise is
important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the
universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to~non-
quantum! field theories that nevertheless exhibit deep and important relationships with quantum field theory. In
this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate
how to extract all the one-loop physics for anarbitrary SPDE subject toarbitrary Gaussian noise. It is
extremely important to realize that Gaussian noise doesnot imply that the field variables undergo Gaussian
fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as
serious as might be supposed: Experience with quantum field theories~QFTs! has taught us that one-loop
physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does,
however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite
using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formal-
ism ~the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT! and instead focus attention
on a minimalist approach that uses only the physical fields~this ‘‘direct approach’’ is the SPDE analog of
canonical quantization using physical fields!. After setting up the general formalism for the characteristic
functional~partition function!, we show how to define the effective action to all loops, and then focus on the
one-loop effective action and its specialization to constant fields: the effective potential. The physical inter-
pretation of the effective action and effective potential for SPDEs is addressed and we show that key features
carry over from QFT to the case of SPDEs. An important result is that theamplitudeof the two-point function
governing the noise acts as the loop-counting parameter and is the analog of Planck’s constant\ in this SPDE
context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to
translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT.
@S1063-651X~99!12011-7#
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I. INTRODUCTION

Stochastic partial differential equations~SPDEs! are an
essential tool in modeling systems where noise is relev
@1#. SPDEs are used for models of many macroscopic s
tems, from turbulence@2–4#, to pattern-formation@5,6#, to
the structural development of the Universe itself@7–11#. It is
known that certain SPDEs can be studied with tools t
transform them into equivalent~stochastic! field theories
which exhibit deep and important relationships with quant
field theory~QFT!. See, for example,@1,2,5,6# and@12–15#.

In this paper we set up the field-theoretical ‘‘minimali
formalism’’ for SPDEs, and demonstrate how to extract
one-loop physics for anarbitrary SPDE subject to additive
Gaussian noise. It is important to realize that Gaussian n
doesnot imply that the field degrees of freedom under
Gaussian fluctuations: the combined interplay of interacti
and fluctuations will appear in the third~and higher! cumu-
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lants for the fieldf(xW ,t). Also, the limitation to one-loop
physics is not as serious as might be supposed: Experi
with quantum field theories~QFTs! has taught us that one
loop physics is often quite adequate to give a good desc
tion of the salient issues@16–21#. In fact, in QFT, the calcu-
lation of one-loop quantities can be augmented by mean
‘‘renormalization-group improved perturbation theory,
which contains most of the relevant features of the physic
all orders in the expansion parameter@17,18#. ~This was
called ‘‘magical perturbation theory’’ by the authors@22# of
Ref. @16#.! Furthermore, at one loop~and higher!, one can
also introduce the effective action and effective poten
@23–26#, tools that allow one to determine the combined
fects of interactions and fluctuations on the ground state
the system. Defining and calculating the one-loop effect
action and effective potential is straightforward. Interpreti
the physical significance of these quantities is more sub
For arbitrary SPDEs it may not even be meaningful to defi
a notion of physical energy. Even when the physical ene
makes sense, dissipative effects may vitiate energy conse
tion ~even when noise is absent!. We therefore spend som
effort in establishing that certain key features of the effect
action for QFTs carry over to SPDEs. In particular, we de
onstrate that it is still meaningful to define and calculate
6343 © 1999 The American Physical Society
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6344 PRE 60DAVID HOCHBERG et al.
effective potential and look for its minima. The minima
the effective potential correspond to ground states of the
tem, and the locations of these minima are equal to stocha
expectation values of the fluctuating field in the presence
noise.

While it is possible to provide an abstract nonperturbat
definition of the effective action@24#, in order to proceed
with explicit calculations~such as for the one-loop effectiv
action! one needs a perturbative procedure based on an
pansion in some small parameter. A well-known proced
of this type, the Martin-Siggia-Rose~MSR! formalism, al-
ready exists in the literature@1#. The MSR formalism in-
vokes additional~unphysical! ‘‘conjugate fields,’’ which are
generalizations of the fictitious fields sometimes introduc
to deal with the dynamics of diffusion. These fictitious fiel
permit one to extend some of the procedures of conserva
physical systems to diffusion. For instance, Morse a
Feshbach state ‘‘the dodge is to consider,. . . , a ‘mirror-
image’ system with negative friction, into which the ener
goes which is drained from the dissipative system.’’~See
@27#, p. 298.! In this paper we do not make use of the co
jugate field formalism of MSR and, instead, proceed in
direct way in which we only have physical fields~plus pos-
sibly a nontrivial functional Jacobian that can be rewritten
terms of ghost fields!. This approach simplifies the calcula
tion since it halves the number of fields one has to deal w
These twoalternativeformalisms are very similar to the situ
ation in spontaneously broken gauge field theories, wh
one can use twoequivalent approaches to perturbatio
theory, such as ‘‘unitary gauges’’ versus ‘‘renormalizab
gauges:’’ in one case theparticle contentis explicit and in
the otherrenormalizabilityis explicit.

After setting up the path-integral formalism for the cha
acteristic functional~partition function!, Z@J#, we define
both the perturbative@23# and nonperturbative effective ac
tion @24#. We then focus on the one-loop effective action a
its restriction to constant~homogeneous and stationar!
fields: the effective potential@20,21#. An important result is
that theamplitudeof the noise two-point correlation functio
acts as the loop-counting parameter and is the analo
Planck’s constant\ in this SPDE context.

We conclude by deriving the formula for the one-loo
effective potential of a general SPDE subject to translati
invariant Gaussian noise. This formula has a strong res
blance to that obtained for ordinary QFTs and allows us
extend the use of QFT tools in the analysis of the SPD
effective potential. We furthermore demonstrate that mu
of the physical intuition regarding the effective action
QFTs also carries over into SPDEs. Finally, we offer a d
cussion of our results. A number of more technical issues
relegated to the Appendixes.

II. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

A. Elementary definitions

Consider the class of stochastic partial differential eq
tions of the form

Df~xW ,t !5F@f~xW ,t !#1h~xW ,t !, ~1!

whereD is any linear differential operator, involving arb
s-
tic
f
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trary time and space derivatives, which doesnot explicitly
involve the fieldf. Typical examples are

D5
]

]t
2n¹W 2 diffusion equation, ~2!

D5
]2

]t2 2¹W 2 wave equation, ~3!

D5
]

]t
Langevin equation. ~4!

The functionF@f# is any forcing term, generally nonlinea
in the fieldf. Typical examples are

F@f#51
l

2
~¹W f!2 ~5!

in the Kardar-Parisi-Zhang~KPZ! equation,

F@f#5P@f# ~6!

in reaction-diffusion-decay systems~P is a polynomial!,

F@f#52
dH@f#

df
~7!

in ‘‘purely dissipative’’ SPDEs.

The forcing term will typically not contain any time deriva
tives, but this is not an essential part of the following ana
sis except insofar as time derivatives may complicate so
of the Jacobian functional determinants that will be enco
tered below. Nonderivative terms linear in the field can
interpreted either as decay rates or~if a diffusion term is also
present! as mass terms. They can be freely moved betw
the differential operatorD and the forcing termF@f#. If they
are considered part of the forcing term, then

F@f#52gf describes a decay term, ~8!

F@f#52nm2f describes a mass term. ~9!

The functionh(xW ,t) is a random function of its argument
and describes the noise that we assume is present in
system. For the remainder of this paper, we consider fie
independent additive noise. At this stage the nature and p
ability distribution of the noise are completely arbitrary a
do not need to be specified.

The noise represents our ignorance about precise de
in the dynamics of the system. It could be due, for examp
to fluctuations intrinsic to the dynamics~as in the case of
quantum mechanics!, or it could be thought of as represen
ing the dynamics of short-scale degrees of freedom wh
have not completely decoupled from the macroscopic
namics~e.g., thermal or turbulent noise!, or it could be a way
of implementing ignorance of theexact initial or boundary
conditions in the system. Noise can also be a way of su
marizing the necessary truncation of the deterministic
namics of a many-body system when we try to describe it
a finite set of variables~e.g., a truncated BBGKY hierarchy!.
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If we think of turning off the noise, we donot require that
the nonstochastic partial differential equationDf5F@f# be
derivable from an action principle~i.e., the nonstochastic
partial differential equation need not arise from a Lagrang
formalism!. Nevertheless, once we include noise, we dem
strate that the presence of noise automatically leads to a
eralized action principle for the noisy system. It turns o
that in the presence of Gaussian noise an equation of mo
proportional to the factor (Df2F@f#) can always be de
rived by varying a well-defined ‘‘classical’’ action, and th
the solutions to this equation of motion will coincide wi
those of the nonstochastic equation, provided a certain J
bian determinant is nonsingular~i.e., invertible!. This is ex-
plained in full detail in Appendix B.

B. Some typical examples

An example of considerable interest is the reactio
diffusion-decay system where the SPDE is taken to be@28–
30#

]f

]t
2n¹W 2f5P@f#1h. ~10!

This equation is used, for example, to describe the den
f(xW ,t) of some chemical species as a function of space
time when the chemical is subject to both diffusion~via n)
and reaction or decay@via P(f), a polynomial in the density
field#. Expanding out the first few terms,

P~f!5P01P1f1P2f21P3f31•••, ~11!

we can identifyP0 with a constant~in space and time! source
or sink, 2P1 with the decay rate, andP2 with the reaction
rate for the two-body reaction, etc. The noise accounts
random effects due to coupling to external sources, trun
tion of degrees of freedom, averaging over microscopic
fects, etc. Forn species of chemical reactant, the fieldf is
simply promoted to a vector in configuration spacef(xW ,t)
→f i(xW ,t),$ i 51, . . . ,n%. @The diffusion constant,n, and de-
cay rates then become matrices, the noise a vector, and
polynomial Pi(f j ) a vector-valued polynomial with tenso
rial coefficients.#

A second well-known example is the massive KPZ eq
tion ~equivalent to the massive noisy Burgers equati!
@5,6,13,14,31#

]f

]t
2n¹W 2f52nm2f1

l

2
~¹W f!21h. ~12!

In the fluid dynamical interpretation of the KPZ equation, t
fluid velocity is taken to bevW 52¹W f. This model problem
leads to a form of ‘‘turbulence’’ which is known in the lit
erature as Burgulence@32,33#.

A third example is the enormous class of SPDEs kno
as ‘‘purely dissipative’’ systems@15#. Purely dissipative sys
tems have SPDEs of the form

]f

]t
52

dH@f#

df~xW !
1h. ~13!
n
-
n-

t
on

o-

-

ty
d
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f-

the
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n

These equations fall into our classification of general SPD
as particular types of Langevin equations withD5] t and
with a driving term that is a~functional! gradient F@f#

52dH@f#/df(xW ). The nomenclature ‘‘purely dissipative’
is justified by the fact that in theabsenceof noise these
systems satisfy

]H@f#

]t
52E S dH@f#

df~xW !
D 2

ddxW < 0. ~14!

Note that the reaction-diffusion-decay~RDD! system can be
interpreted as an example of a purely dissipative system
we takeD5] t and

HRDD@f#5E Fn

2
~¹W f!21E

0

f(x)

P~f̃ !df̃GdxW . ~15!

On the other hand, the KPZ system isnot a purely dissipative
system,

dFKPZ@f~x!#

df~y!
5nm2d~x2y!1l¹W xf~x!•¹W xd~x2y!

5nm2d~x2y!2l¹W yf~y!•¹W yd~x2y!

Þ
dFKPZ@f~y!#

df~x!
. ~16!

The class of purely dissipative SPDEs is a very wide one,
there are many SPDEs that are not of purely dissipative ty
We do not want to restrict attention to purely dissipativ
systems in this paper, rather we want to keep the discus
as general as possible.

III. STOCHASTIC AVERAGES, CHARACTERISTIC
FUNCTIONAL, FEYNMAN RULES

We will focus on the stochastic partial differential equ
tion

Df~xW ,t !5F@f~xW ,t !#1h~xW ,t ! ~17!

and analyze it using functional integral techniques: Feynm
diagrams, the effective action, and the effective potent
We develop the field theory via the most direct route, w
no conjugate fields present.

We postpone to subsequent papers more technically
volved approaches such as the Martin-Siggia-Rose Lagra
ian ~with its extra unphysical conjugate fields used for boo
keeping purposes! and the hidden BRST supersymmet
implicit in these stochastic differential equation
@1,12,15,34#.

In this section we develop the necessary tools to const
the basic field theory and nonequilibrium statistical mech
ics associated with Eq.~17!. We will assumeuniquenessof
the solution to Eq.~17!, and in order to calculate the chara
teristic functional, we will introduce anensemble average
over noise realizations, and the notion ofd functionals. Once
thecharacteristic functionalis available, we find it useful to
introduceghosts in the manner of Faddeev-Popovbefore de-
riving the Feynman rules. We will only need to make one
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assumption about the noise: that it be Gaussian, i.e., tha
its cumulants are vanishing except the first,^h(xW ,t)&, and
second,Gh5^h(xW ,t)h(xW8,t8)&. ~See, e.g.,@35#.!

A. Step 1: Uniqueness

Let us assume that the partial differential equation~17!,
plus initial conditions, is a well-posed problem. Thus, giv
a particular realization of the noise,h, the differential equa-
tion is assumed to have a unique solution which we de
nate as

fsoln~xW ,tuh!. ~18!

This assumption is relatively mild but does imply that t
nonlinearity is sufficiently weak so as not to drive us pas
bifurcation point. On the other hand, it is known that noise
concert with nonlinearities can lead to the phenomenon
delayed bifurcation in nonlinear parabolic SPDEs@36#. If the
partial differential equation is ill-posed, in the sense that
solutions are not unique, additional analysis must be de
oped on a case-by-case basis. A specific example of
behavior is spontaneous symmetry breaking in QFT, wh
causes the naive loop expansion to violate the conve
properties of the effective potential. This situation must
dealt with by an improved loop expansion@37–39#.

B. Step 2: Ensemble average

For any functionQ(f) of the field f we introduce the
ensemble average~over the noise!, defined by

^Q~f!&[E ~Dh!P @h#Q„fsoln~xW ,tuh!…, ~19!

whereP@h# is the probability density functional of the nois
It is normalized to 1, but is otherwise completely arbitra
that is,

E ~Dh!P@h#51. ~20!

The symbolDh indicates a functional integral over all in
stances~or realizations! of the noise.

C. Step 3: d functionals

We next use a functionald function to write the following
identity:

fsoln~xW ,tuh![E ~Df!f d@f2fsoln~xW ,tuh!#

5E ~Df!f d†Df2F@f#2h‡AJJ †,

~21!

where we have performed a change of variables and in
duced the Jacobian functional determinant, defined by

J[detS D2
dF

df D ~22!
all

-

a

f

e
l-
is
h
ty
e

,
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and its adjoint

J †[detS D†2
dF†

df D . ~23!

The above is just the functional analog of a stand
d-function result: If f (x)50 has a unique solution atx5x0,
then

x05E dx xd~x2x0!5E dx xd„f ~x!…u f 8~x!u

5E dx xd@„f ~x!…Af 8~x!@ f 8~x!#* . ~24!

The d function forces one to pick up only one contributio
from the solution of the equationf (x)50, and the derivative
is there to provide the correct measure to the integral. In
functional case the derivative becomes a determinant. It i
fact the Jacobian determinant associated with the chang
variables fromf to Df2F@f#. It is now easy to see tha
one also has the identity

Q„fsoln~xW ,tuh!…[E ~Df!Q~f!d~Df2F@f#2h!AJJ †.

~25!

Furthermore, the ensemble average over the noise, Eq.~19!,
becomes

^Q~f!&5E ~Dh!~Df!P @h#Q~f!

3d~Df2F@f#2h!AJJ †. ~26!

The noise integral is easy to perform, with the result that
arbitrary stochastic averages one has

^Q~f!&5E ~Df!P †Df2F@f#‡Q~f!AJJ †. ~27!

We see from this equation that the effect of the noise o
appears in the stochastic average through its probability
tribution P†Df2F@f#‡. It is worthwhile to point out that
the main difference, at this stage of the formalism, betwe
the present ‘‘minimal’’ approach and that of MSR lies in th
way thed functional is handled. In MSR, instead of integra
ing directly over the noise, as is done here, thed functional
is replaced by its functional Fourier integral representati
This is the step wherein the conjugate field enters. If t
latter route is taken, the noise integration can be perform
exactly only for Gaussian noise. In the minimal formalis
by contrast, the integration over the noise can be done
actly for arbitrary noise. It thus lends itself immediately f
handling non-Gaussian systems: For general noise distr
tions we can explicitly write down the probability distribu
tion for the fields as

P@f#5P †Df2F@f#‡AJJ †. ~28!

We will not explore further the possibility of arbitrary nois
in this paper, since Gaussian noise~which manifestly does
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not imply Gaussian fluctuations of the fields! is already suf-
ficiently general to be of great practical interest.

The presence of the functional determinant is essentia
must be kept to ensure proper counting of the solutions to
original stochastic differential equation. In QFT this fun
tional determinant is known as the Faddeev-Popov dete
nant and is essential in maintaining unitarity@19,21#, i.e.,
conservation of probability. In some particular cases
functional determinant is field-independent, and it is safe
neglect it. We discuss this more fully in Appendix A and
the companion papers@30,31#, but for the sake of generality
we will carry these determinants along~with little extra cost!
for the rest of this paper.

D. Step 4: Characteristic functional „partition function …

A particularly useful quantity is the generating function
or characteristic functional~partition function!, defined by
taking

Q~f!5expS E ddxW dt J~xW ,t !f~xW ,t ! D ~29!

in Eq. ~19!. We define it as follows:

Z@J#5
defK expS E dx J~x!f~x! D L ~30!

5E ~Df!P@f#expS E dx Jf D ~31!

5E ~Df!P†Df2F@f#‡expS E dx Jf DAJJ †,

~32!

with an obvious condensation of notation,dx5ddxW dt. When
there is no risk of confusion, we will suppress thedx com-
pletely. This key result will enable us to calculate the effe
tive action and the effective potential in a direct way.

E. Step 5: Gaussian noise

We will now make some assumptions about the noise:
assume it to be Gaussian. Without loss of generality we
take the noise to have zero mean, since if the mean is n
zero we can always redefine the forcing termF@f# to make
the noise have zero mean. We therefore take the noise t
Gaussian of zero mean, so that the only nonzero cumula
the second-order one. We do not need to make any m
specific assumptions about the functional realization of
noise: the noise might~for instance! be white, power-law,
colored, pink, 1/f noise, or shot noise, and our consideratio
below apply to all of these cases. As long as the nois
Gaussian, its probability distribution can be written as

P @h#5
1

Adet~2pGh!

3expS 2 1
2 E E dx dyh~x!Gh

21~x,y!h~y! D .

~33!
it
e

i-

e
o
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-

e
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The characteristic functional~partition function! is thus seen
from Eq. ~32! to be

Z@J#5
1

Adet~2pGh!
E ~Df!AJJ † expS E Jf D

3expS 2 1
2 E E ~Df2F@f#!Gh

21~Df2F@f#! D .

~34!

This characteristic functional~partition function! contains all
the physics of the model since it allows for the calculation
averages, correlation functions, thermodynamic variab
etc. Note that the noise has been completely eliminated
survives only through the explicit appearance of its tw
point correlation function in the above. Since the charac
istic functional is now given as a path integral over t
physical field, all the standard machinery of statistical fie
theory ~and quantum field theory! can be brought to bea
@40#. See, for example,@15,19–21# and @41–51#.

This formula for the partition function demonstrates th
~modulo Jacobian determinants! all of the physics of any
stochastic differential equation can be extracted from a fu
tional integral based on the ‘‘classical action’’

Sclassical5
1
2 E E ~Df2F@f#!Gh

21~Df2F@f#!. ~35!

This ‘‘classical action’’ is a generalization of the Onsage
Machlup action@52#. The Onsager-Machlup paper dealt wi
stochastic differential equations rather than partial differ
tial equations~mechanics rather than field theory! and was
limited to noise that was temporally white. As their forma
ism was developed with the notions of linear-response the
in mind, Onsager and Machlup assumed the ‘‘forcing term
F@f# to be linear, so thatboth the noise and the field fluc
tuations were Gaussian. In our formalism all these assu
tions can be relaxed: the forcing term can be nonlinear an
general the field fluctuations will not be Gaussian even if
noise is Gaussian.

F. Step 6: Faddeev-Popov ghosts

We mentioned previously that the Jacobian determinan
often ~not always! field-independent. This is a consequen
of the causal structure of the theory as embodied in the
that we are only interested inretardedGreen functions. The
situation here is in marked contrast with that in QFT whe
the relativistic nature of the theory forces the use ofFeynman
Green functions (1 i e prescription!. As we explain in Ap-
pendix A, this change radically alters the behavior of t
functional determinant.

In order to avoid too many special cases, and to hav
formalism that can handle both constant and field-depend
Jacobian factors, we exponentiate the determinant via
introduction of a pair of Faddeev-Popov ghost fields@15,19#,
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6348 PRE 60DAVID HOCHBERG et al.
J[detS D2
dF

df D
5

1

det~2pI !
E ~D@g†,g# !expS 2

1

2E g†FD2
dF

dfGgD ,

~36!

whereI is the identity operator on spacetime. Theg field is a
so-called~complex! scalar ghost field. It is a field of anti
commuting complex variables and behaves in a manner s
lar to an ordinary scalar field except that there is an ex
minus sign for each ghost loop. We also need to use
conjugateghost fieldg† to handle the determinant.

We should point out that if the operatorD2(dF/df) is
self-adjoint, thenJ5J †. In this caseAJJ † reduces touJu
5uJ †u. In QFTs the relevant operators occurring in the Ja
bian determinants are obtained from second functional
rivatives of the action and are automatically self-adjoint.
contrast, for SPDEs there is no guarantee thatD
2(dF/df) be self-adjoint, and in fact for the examples pr
viously discussed~KPZ, reaction-diffusion-decay, and pure
dissipative! this operator is not self-adjoint. Instead we re
on the much weaker property that the operatorD
2(dF/df) is real in order to writeAJJ †5AJJ* 5uJu. In
all cases we are interested in, the relevant operators are
only real, but positive, so that the absolute value symbol
be ignored and the characteristic functional equation~34! is
given by

Z@J#5
1

Adet@~2p!3Gh#
E ~Df!~Dg!~Dg†!

3expS 2 1
2 E E ~Df2F@f#!Gh

21~Df2F@f#! D
3expS 2 1

2 E g†FD2
dF

dfGgDexpS E Jf D . ~37!

This procedure trades off the functional determinants for t
extra functional integrals. The advantage of this proced
becomes clear when one develops the perturbation the
@This Faddeev-Popov trick for exponentiating the Jacob
determinant is also essential in finding the hidden Becc
Rouet-Stora-Tyutin~BRST! supersymmetry.#

It must be noted that neither pair of ghost field variab
couples to an external source. This means they can only
pear in internal lines in Feynman diagrams, a fact that will
used later on when we discuss loops and loop counting.

In Appendix A, we take a closer look at the Jacobi
functional determinant, its causal structure, and its spec
form for local driving forces. In the latter part of this Appen
dix, we make use of the perturbation theory based on Fe
man diagrams to evaluate this functional determinant fr
another perspective.

G. Step 7: Feynman rules

With the partition function in the form given above~with
two independent ghosts!, it is now easy to develop a forma
Feynman diagram expansion. We wish to treat the driv
i-
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term F@f# as the perturbation and expand around the fr
field theory defined by settingF50. With this convention
the free action is, explicitly,

Sfree[E E H 1

2
@Df#Gh

21@Df#J dx dy1E H 1

2
g†DgJ dx.

~38!

There are two particle propagators in this free action, one
the f field, and two for the ghost fields. Formally,

Gff5@D†Gh
21D#215@D21Gh~D†!21#, ~39!

Gg†g5@D#21. ~40!

HereD† is the adjoint operator ofD, defined by partial inte-
gration.~For instance, ifD5] t2n¹W 2, thenD†52] t2n¹W 2.!
In the interests of generality, we reiterate the fact that
have not assumed translation invariance for the noise~al-
though the noise is now Gaussian!. The momentum-
frequency representation for the propagators is

Gff~kW1 ,v1 ;kW2 ,v2!5
Gh~kW1 ,v1 ;kW2 ,v2!

D†~kW1 ,v1!D~kW2 ,v2!
, ~41!

Gg†g~kW ,v!5
1

D~kW ,v!
. ~42!

The Feynman vertices come from the interaction piece of
action, which in this convention is

Sinteraction5E E H 2@Df#Gh
21F@f#

1
1

2
F@f#Gh

21F@f#J dx dy2E H 1

2
g†

dF

df
gJ dx.

~43!

The nature of the vertices~obtained by functional differen-
tiation with respect to the fields present in the theory! de-
pends on the structure of the forcing termF@f#. In the mean
time we formally assert

f2F@f# vertex: 2
D~kW1 ,v1!fF@f#

Gh~kW1 ,v1 ;kW2 ,v2!
, ~44!

F@f#2F@f# vertex: 1
1

2

F@f#F@f#

Gh~kW1 ,v1 ;kW2 ,v2!
,

~45!

ghost vertex: 2
1

2
g†

dF@f#

df
g. ~46!

Note that to turn these schematic Feynman rules into pra
cal computational tools, we will need to assume thatF@f# is
some specific local functional of the fieldf ~typically a
polynomial or polynomial with derivatives!. When we define
the effective action, we will again see that the formalism c
be successfully developed even for non-translation-invar
noise, and this derivation of the Feynman rules matches
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generality of the definition of the effective action. This co
cludes, for now, the most general aspects of the discuss

When it comes to actual calculations in specific mode
the majority of these models have noise that is not o
Gaussian but is also translation invariant. In the interest
simplicity, we now ~finally, and only for the rest of this
particular section! indicate the effects of assuming transl
tion invariance for the noise. This lets us take simple Fou
transforms in the difference variablex2y ~more precisely,
xW2yW and tx2ty) to see that in momentum-frequency spa

Gff~kW ,v!5
Gh~kW ,v!

D†~kW ,v!D~kW ,v!
5

Gh~kW ,v!

D~2kW ,2v!D~kW ,v!
,

~47!

Gg†g~kW ,v!5
1

D~kW ,v!
. ~48!

The Feynman diagram vertices are now (f and g are here
understood to be Fourier transformed!

f2F@f# vertex: 2
D~kW ,v!fF@f#

Gh~kW ,v!
, ~49!

F@f#2F@f# vertex: 1
1

2

F@f#F@f#

Gh~kW ,v!
, ~50!

ghost vertex: 2
1

2
g†

dF@f#

df
g. ~51!

As always, there is a certain amount of freedom in writi
down the Feynman rules. It is always possible to take par
the quadratic piece in the total action and move it from
free action to the interaction term or vice versa. We ha
already seen that a linear term~e.g., nm2f) in the forcing
function F@f# can with equal facility be reassigned to th
differential operatorD via the schemeD→D2nm2,F@f#
→F@f#2nm2f. This procedure can always be used to co
pletely eliminate any linear term inF@f#. Similar but more
complicated behavior occurs if the forcing function conta
both constant and quadratic pieces~e.g.,a1bf2). With the
conventions given above, the interaction term contains~at
least! a ‘‘cosmological constant,’’12 a2**Gh

21(x,y)dx dy, a
quadratic piece,ab**Gh

21(x,y)f2(y)dx dy, and af4 inter-
action. The quadratic piece could be moved into the f
action at the cost of making the expression for the f
propagator a little more complicated. This freedom in writi
down the Feynman rules does not imply any ambiguity in
physical results: Moving quadratic pieces around from
interaction term to the free action will modify the Feynm
rules but will not affect any physical quantities.

IV. EFFECTIVE ACTION: LOOP EXPANSION

In order to set up the formalism for the effective actio
and its loop expansion, it is useful to first separate the tw
point function for the noise into ashape, g2(x,y), and a
constantamplitude, A, via the correspondence
n.
,
y
of

r

of
e
e
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s

e
e

e
e

,
-

Gh~x,y!5
def

Ag2~x,y!. ~52!

For the case of Gaussian white noise, this is automatic
satisfied by the definitionGh(x,y)→Ad(x2y). For more
general Gaussian noises~which describe, for instance, th
effects of small scale degrees of freedom not fully decoup
from the physics off, such as in the case of a heat bath in
which f has been immersed!, this form of the two-point
function allows the interpretation of the noise intensityA as
a characterization of the bath-system coupling. This will b
come more evident when we compare the ‘‘effective pot
tial’’ in noisy environments, Eq.~72! below, with the same
object for zero-temperature quantum field theory, Eq.~73!.
The normalization of the shape functiong2(x,y) is essen-
tially arbitrary, and any convenient normalization will su
fice.

Another advantage of singling out the intensity parame
A is that it is the loop-counting parameter for this formul
tion of SPDEs. To see this, one starts by writing the char
teristic functional~with external sources rescaled for conv
nience! as

Z@J#5
1

Adet@~2p!3Gh#
E ~Df!~Dg!~Dg†!

3expS 2 1
2 E E ~Df2F@f#!g2

21~Df2F@f#!

A D
3expS 2 1

2 E g†FD2
dF

dfGgDexpS *Jf

A D . ~53!

The generating function~Helmholtz free energy in statistica
field theory! for connected correlation functions is defined

W@J#51A$ ln Z@J#2 ln Z@0#%. ~54!

The effective action~Gibbs free energy in statistical fiel
theory! is then definednonperturbativelyin terms ofW@J#
by taking its Legendre transform@20,24#,

G@f;f0#52W@J#1E fJ,
dW@J#

dJ
5f,

dG@f;f0#

df
5J. ~55!

Heref0 is some suitable background~mean! field, which is
taken to be the stochastic expectation value off in the ab-
sence of external sources,J50. It is often but not always
zero, and we retain it for generality.

The previous equation defines the nonperturbative ef
tive action. For any specific example the previous equatio
not very useful, and we often have to restrict ourselves t
perturbative calculation of the effective action, after singli
out an expansion parameter. One can always develop a F
man diagram expansion provided that the classical action
be separated into a ‘‘quadratic piece’’ and an ‘‘interacti
term,’’ as we have already done.
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In the loop expansion the sum of all connected diagra
coupled to external sourcesJ(x) is exactlyW@J# as defined
above, and the effective actionG@f;f0# corresponds to al
~amputated! one-particle irreducible graphs~1PI!, that is,
Feynman diagrams that cannot be made disconnected by
ting only one propagator.

In the following argument, we will be considering dia
grams contributing to the effective action. Recall that gho
can only appear as internal lines, since they are not cou
to external sources.

To see the role of the amplitudeA as a loop-counting
parameter, note that each field propagator is proportiona
A while each ghost propagator is independent ofA. The
vertices that do not include ghosts are proportional toA21,
while ghost vertices are independent ofA. Thus each Feyn-
man diagram contributing to the effective action is prop
tional toAI f2Vf, whereI f is the number of nonghost propa
gators andVf is the number of nonghost vertices. But ea
ghost vertex is attached to exactly two ghost propaga
~except for tadpole ghost loops!, and each ghost propagato
is attached to exactly two ghost vertices~except for tadpole
ghost loops!. In the case of tadpole ghost loops, exactly o
propagator is attached to exactly one ghost vertex. This
plies that if one assigns a factorA to each ghost propagato
and a factor ofA21 to each ghost loop, then one will no
change the total number of factors ofA assigned to the Feyn
man diagram. Thus the Feynman diagrams are proporti
to AI 2V, whereI is the total number of~internal! propagators
in the Feynman diagram andV is the total number of verti-
ces, now including ghosts.

It is the result of a standard topological theorem that
any graph~not just any Feynman diagram! I 2V5L21,
whereL is the number of loops@19,21,43#. It is then easy to
see that field theories based on SPDEs exhibit exactly
same loop-counting properties as QFTs except that the lo
counting parameter is now theamplitudeof the noise two-
point function ~instead of Planck’s constant\). The only
subtle part of the argument has been in dealing with
Faddeev-Popov ghosts, and it is important to realize that
argument is completely independent of the details of the
ferential operatorD and the forcing termF@f#. When it
comes to calculating the diagrams contributing to the eff
tive action, the extra explicit factor ofA inserted in the defi-
nition of W@J# above guarantees that the 1PI graphs cont
ute to G@f;f0# with a weight that is exactlyAL. This
demonstrates thatA is a bona fideexpansion parameter.

At this point, it becomes natural to make a comparis
with the MSR~Martin-Siggia-Rose! formalism for the calcu-
lation of the effective action in stochastic field theorie
where one introduces a fieldconjugateto f. Historically,
this conjugate field first arose in setting up a variational
proach to the diffusion equation~cf. Morse and Feshbac
@27#!. The following remarks will help one to understand t
differences and the complementarity of our approach to
MSR approach; the bottom line is related to technical iss
associated with proving all-orders renormalizabil
@1,12,15#. The direct approach developed in this paper
akin to the ghost-free axial gauge of QCD or the so-cal
unitary gauge in the standard model of particle physics: T
is a formalism well-adapted to isolating the physical degr
of freedom, at least perturbatively, but is not well-adapted
s
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proving the all-orders renormalizability of the theory.~Prov-
ing one-loop renormalizability for specific theories is not t
difficult, and we will address this issue in a pair of compa
ion papers@30,31#.!

In analogy with the situation in QFT, one has three po
sible responses to this state of affairs.

~i! Use the MSR formalism for all calculations. This
comparable to using BRST-invariant versions of the stand
model of particle physics to calculate scattering cross s
tions and decay rates~That is, overkill!.

~ii ! One could appeal to the fact that the SPDEs cons
ered in this paper are hardly likely to be thought of as fu
damental theories in the particle physics sense; these SP
are much more like ‘‘effective field theories,’’ in that th
noise and fluctuations in real physical systems are mani
tations of our lack of knowledge of the short-distance ph
ics. Viewed as effective theories, renormalizability is
longer the main guiding light it was once thought to be@20#.

~iii ! At a verypractical level one can choose to be guide
by experience with quantum field theories. It is well know
that one-loop physics is often sufficient for extracting mo
of the physical information from a system. Calculations b
yond one-loop, while certainly important at a fundamen
level, are often more than is really needed. One of the g
technical simplifications of one-loop physics is that, via ze
function technology, essentially any field theory can be re
larized at one loop without excessive complications@53–55#.

For these reasons we will now restrict our attention to
one-loop calculation~apart from the discussion of Feynma
diagrams and the loop expansion, everything up to this p
has been valid nonperturbatively, while those discussi
were still valid to all orders in perturbation theory!. In the
next section we calculate the one-loop effective action.

V. EFFECTIVE ACTION: ONE LOOP

It is well known that the effective action for a field theor
can be obtained by performing a Legendre transform on
logarithm of the characteristic functional~partition function!.
Writing

Z@J#5E Df expS 2S @f#1*Jf

a D , ~56!

wherea is the parameter characterizing the fluctuations, o
gets for the one-loop effective action~first order ina)

G@f;f0#5S @f#2S @f0#1 1
2 a$ ln det~S2@f#!

2 ln det~S2@f0# !%1O~a2!. ~57!

Here S25d2S/df(x)df(y) is the matrix of second-orde
functional derivatives of the actionS@f# ~often called the
Jacobi field operator!. For QFT the loop-counting paramete
a is Planck’s constant\, and S2 is a second-order partia
differential operator that depends on the fieldf via some
potential-like term. The determinants of partial different
operators can be defined and calculated by a variety of te
niques. The notationS@f0# is actually shorthand for
S†^f@J50#&‡, and for a symmetric ground stat
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(^f@J50#&50) one often hasS@0#50. These terms con
tribute a constant offset to the effective action. In QFT the
terms are interpreted as a field-independent contribution
the vacuum energy and are traditionally ignored, although
the context of cosmology they contribute~sometimes cata
strophically! to the cosmological constant. In the interest
generality we will make them explicit. When we consid
field theories based on SPDEs, the loop-counting param
a becomesA, which we singled out as the amplitude for th
noise, and the bare action in Eq.~53! is replaced by Eqs.~34!
and ~37!,

S @f#→ 1
2 E E $~Df2F@f#!g2

21~Df2F@f#!%

3ddxW dt ddyW dt82
1

2
A~ ln J1 ln J †! ~58!

5Sclassical@f#2
1

2
A~ ln J1 ln J †!, ~59!

where on the second line we have denoted byS classical@f#
the double integral in the previous line. This is the quan
that we have previously defined as the nonlinear genera
tion of the Onsager-Machlup action to arbitrary Gauss
noise@52#.

The noise at this stage is Gaussian, and does not nee
be translation invariant. We have explicitly kept the Jacob
functional determinant. Inserting Eq.~59! into the formula
for the one-loop effective action@Eq. ~57!#, we obtain the
following general result~applicable to any SPDE!:

G@f;f0#5Sclassical@f#2Sclassical@f0#

1AH 1

2
ln det~S2@f#!2

1

2
ln det~S2@f0# !

2
1

2
ln J @f#2

1

2
ln J †@f#1

1

2
ln J @f0#

1
1

2
ln J †@f0#J 1O~A 2!. ~60!

To make this more explicit, the fluctuation operat
S2(f) ~also known as the Jacobi field operator! is

S2@f#5S D←2
dF←

df Dg2
21S D2

dF

df D
2~Df2F@f#!g2

21 d2F

dfdf
. ~61!

Here the← indicates that these operators should be thou
of as acting to the left. Alsog2

21(x,y) is to be understood a
a ‘‘matrix’’ with implicit sums over the indicesx,y ~i.e.,
integrations over the variables.! Note that ifF@f#, contains
derivatives off, thendF/df will be a differential operator.
Performing an integration by parts, this can be converted
statement about the adjoint operator acting to the right,
we can rewriteS2@f# as
e
to
in

f

ter

y
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n

to
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ht

a
.,

S2@f#5S D†2
dF†

df Dg2
21S D2

dF

df D
2~Df2F@f#!g2

21 d2F

dfdf
. ~62!

Putting all this together gives the following one-loop res
for the effective action:

G@f;f0#5 1
2 E E ddxW dt ddyW dt8$~Df2F@f#!g2

21

3~Df2F@f#!%2
1

2
A~ ln J1 ln J †!

1
1

2
A ln detF S D†2

dF

df
†Dg2

21S D2
dF

df D
2~Df2F@f#!g2

21 d2F

dfdfG
2~f→f0!1O~A2!. ~63!

Grouping together the terms proportional toA, and using the
representation of the functional determinant, enables u
rewrite the above in the alternative form

G@f;f0#5 1
2 E E ddxW dt ddyW dt8$~Df2F@f#!g2

21

3~Df2F@f#!%

1
1

2
A ln detF I 2H S D†2

dF

df
†D 21

g2S D2
dF

df D 21

3S ~Df2F@f#!g2
21 d2F

dfdf D J G
2~f→f0!1O~A2!. ~64!

This expression for the one-loop effective action is instru
tive. It is made up of two contributions whose origin an
physics are quite different. On the one hand, the first te
~the generalized Onsager-Machlup term! gives a contribution
whose form is directly related to both the noiseshape factor
and the non-noisy part of the equation of motion, includi
nonlinearities. On the other hand, the log-determinant term
proportional to the noiseamplitude~which we have seen is
the loop-expansion parameter! and its specific form depend
also on the structures ofD andF@f#, as well as on proper-
ties of the noise shape function. Therefore, noise play
central role in the physics of the SPDE and, as will be d
cussed below, particularly in the nature of the ground stat
the stochastic system described by Eq.~1!.

VI. EFFECTIVE POTENTIAL: ONE LOOP

We now concentrate on field configurations that are
mogeneous and static. For such field configurations the
fective action reduces to a quantity known as the ‘‘effect
potential.’’ In this section we willcalculate the effective
potential, deferring the discussion of its physicalinterpreta-
tion ~in the context of SPDEs! to the next section.
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The effective potential is defined as

V @f;f0#5
G@f;f0#

V
, ~65!

with f a homogeneous and static field configuration, andV
the volume of spacetime. The effective potential at one lo
is given by

V @f;f0#5
1

2
F2@f#H E ddxW dt g2

21J 2
1

2

A
V

ln detS D2
dF

df D
2

1

2

A
V

ln detS D†2
dF†

df D
1

1

2

A
V

ln detF S D†2
dF†

df Dg2
21S D2

dF

df D
1F@f# H E ddxW dt g2

21J d2F

dfdfG
2~f→f0!1O~A2!. ~66!

In order to turn this into a more tractable expression, it
useful to introduce a frequency-momentum representat
First notice that

E ddxW dt g2
21~xW ,t !5E ddkW dv

~2p!d11
ddxW dt g̃2

21~kW ,v!

3exp@2 i ~vt2kW•xW !#

5g̃2
21~kW50W ,v50!. ~67!

@It is clear from the formula for the one-loop effective p
tential equation~66! that the above integral has to be finit
or rendered finite by appropriate renormalizations of
noise correlation function and the parameters it contains#

We next make use of the following identity valid for
translation invariant operatorX:

ln detX5E ddxW dtE ddkW1dv1E ddkW2dv2^xW ,tukW1 ,v1&

3 ln X~kW1 ,v1!dd~kW1 ,kW2!d~v1 ,v2!^kW2 ,v2uxW ,t&

5VE ddkW dv

~2p!d11
ln X~kW ,v!. ~68!

Applying this to the one-loop effective potential yields

V @f;f0#5
1

2
F2@f#g̃2

21~kW50W ,v50!

2
1

2
AE ddkW dv

~2p!d11
lnFD~kW ,v!2

dF

dfG
2

1

2
AE ddkW dv

~2p!d11
lnFD†~kW ,v!2

dF†

df G
p

s
n.

e

1
1

2
AE ddkW dv

~2p!d11
lnF S D†~kW ,v!2

dF†

df D
3g̃2

21~kW ,v!S D~kW ,v!2
dF

df D
1F@f#

d2F

dfdf
g̃2

21~kW50W ,v50!G
2~f→f0!1O~A2!. ~69!

~Note thatg2 plays two rather different roles above.! We
now adopt the simplifyingconventionthat

E ddxW dt g2
21~xW ,t !515g̃2

21~kW50,v50!. ~70!

This is only aconvention, not an additional restriction on th
noise, since it only serves to give an absolute meaning to
normalization of the amplitudeA.

With these conventions, the one-loop effective poten
can be written as

V @f;f0#5
1

2
F2@f#2

1

2
AE ddkW dv

~2p!d11
lnFD~kW ,v!2

dF

dfG
2

1

2
AE ddkW dv

~2p!d11
lnFD†~kW ,v!2

dF†

df G
1

1

2
AE ddkW dv

~2p!d11
lnF S D†~kW ,v!2

dF†

df D
3g̃2

21~kW ,v!S D~kW ,v!2
dF

df D1F@f#
d2F

dfdfG
2~f→f0!1O~A2!, ~71!

which can be recast into

V @f;f0#5
1

2
F2@f#1

1

2
AE ddkW dv

~2p!d11

3 lnF 11

g̃2~kW ,v!F@f#
d2F

dfdf

S D†~kW ,v!2
dF†

df D S D~kW ,v!2
dF

df D G
2~f→f0!1O~A2!. ~72!

This formula is one of the central results of this paper.
shows that noise-induced fluctuations modify the zero-lo
piece of the potential in a way which is reminiscent of t
situation in both statistical and quantum field theory. F
example, in QFT one has@20,21#
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VQFT@f;f0#5V~f!1
1

2
\E ddkW dv

~2p!d11

3 lnF 11

d2V

dfdf

v21kW21m2
G

2~f→f0!1O~\2!. ~73!

We see in Eq.~72! that the ground-state structure of th
SPDE ~which we will soon see is obtained by minimizin
V@f;f0#) depends on both the noise correlations and
nonlinearities induced by the forcing term. We also see
plicitly how the noise amplitude is essential in the compe
tion between deterministic and stochastic effects.

The major difference between the effective potential
SPDEs and QFT lies in the fact that for SPDEs the sc
propagator of QFT is replaced with a propagator which ha
more complex structure for the equivalent of the ‘‘mas
term. This difference is due to the causal structure of SPD

Notice also that for SPDEs one can naturally adapt
noise to be both the source of fluctuationsand the regulator
to keep the Feynman diagram expansion finite. This follo
immediately by inspection of Eq.~72!, which shows that the
~momentum- and frequency-dependent! noise shape function
g̃2 will affect the momentum and frequency behavior of t
one-loop integral. The finiteness, divergence structure,
renormalizability of this integral will depend very much o
the functional form ofg̃2. It is thus clear that we can use th
noise shape function to regulate the integral, if we wish.

VII. INTERPRETATION

Thephysical interpretationof the effective action and the
effective potential for SPDEs is considerably more sub
than that for the more usual QFTs. The situation is com
cated by the fact that for a completely general SPDE it m
not be meaningful to define a physical energy. Even wh
the SPDE is sufficiently special so that some physical no
of energy may be defined, the system may be subjec
dissipation: Thephysicalenergy need not be conserved, ev
in the absence of noise. Thus the effective action and ef
tive potential for SPDEs are not related to the physical
ergy. This means thatsomeof the physical intuition built up
from QFTs may be misleading and it becomes importan
reassess the notion of effective action and effective poten
to see how much survives in the SPDE context.

The great virtue of the effective action and effective p
tential in QFT is that they contain all the information regar
ing the ground state of the system and its fluctuations: F
a knowledge of the effective potential, one can ascertain
der what conditions the system will display one degree
symmetry or another. It is essential that most of these pr
erties carry over to the case of SPDEs, otherwise the ef
tive action and effective potential would be mere mathem
cal constructs without physical relevance. Fortunately
key features do in fact carry over:~i! the stationary points o
the effective action still correspond to stochastic expecta
values of the fields in the absence of an external current;~ii !
the effective potential governs the probability that thespace-
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time averageof the field takes on specific values;~iii ! even
when the notion of physical energy is lacking, we will s
that there is a notion of quasienergy for SPDEs, with
quasienergy being a measure of the extent to which the
tem has been driven away from its nonstochastic~zero-noise!
configuration; and~iv! the one-loop effective action will be
demonstrated to describe the~approximate! probability for
an initial field configuration to evolve into some final~in the
asymptotic sense! field configuration under the influence o
the stochastic noise.

A. Equations of motion in the presence of fluctuations

If one makes use of the definition of the effective acti
as a Legendre transform, it is easy to see that

dG@f;f0#

df
5J@f#, ~74!

whereJ@f# is that external current required in order that

^f@J#&5f. ~75!

In particular, by takingJ50,

dG@f;f0#

df
50⇔f5^f@J50#&. ~76!

Stationary points of the effective action occur at tho
~mean!-field configurations which are zero-external-curre
stochastic expectation values of the fluctuating field.~Proof
of this may be found, for instance, on p. 65 of Weinbe
@20#.! It is important to realize that one never needs to invo
the notion of energy to obtain this result. The QFT interp
tation of this result, which we now see extends to SPDEs
that the effective action gives the equations of motion on
fluctuations~noise! are taken into account.~This is a nonper-
turbative result, not limited to the one-loop approximation!

B. Probability distribution for the spacetime average field

We have previously seen that the probability distributi
for the fluctuating field, considered as a function over spa
time, to take on the valuef(xW ,t) is given by the functional

P@f#5P @Df2F@f##AJJ †. ~77!

Now suppose we coarse-grain, by looking at the spacet
average of the fieldf as defined by

E Vs3Tf~xW ,t !ddxW dt

VsT
, ~78!

and ask what is the probability that this spacetime aver
take on a specific numerical valuef̄? ~For definiteness we
impose periodic boundary conditions in spaceVs and timeT
and interpretVsT as the volume of the spacetime box. Th
has the technical advantage that the partition functionZ@J# is
then needed only for sourcesJ that are strictly independen
of space and time.!

The probability we are interested in is easily calculated
be
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ProbS E
Vs3T

ddxW dt f~xW ,t !5f̄VsTD
5E ~Df!P@f#dS E

Vs3T
ddxW dt f~xW ,t !2f̄VsTD ~79!

5E ~Df!E dl P@f#

3expS ilF E
Vs3T

ddxW dt f~xW ,t !2f̄VsTG D ~80!

5E dl Z@J~x!5 il#exp~2 ilVsTf̄ !. ~81!

We now take the limit asVsT becomes very large, an
apply the method of stationary phase. By definition we ha

Z@J~x!5 il#5exp†VsT$ ilf~l!2V @f~l!;f0#/A%‡
~82!

with the subsidiary condition

dV @f;f0#

df U
f(l)

5 ilA. ~83!

It is easy to demonstrate that

ProbS E
Vs3T

ddxW dt f~xW ,t !5f̄VsTD
}expS 2VsTFV @f̄;f0#

A 1OS 1

VsT
D G D . ~84!

Thus the effective potential governs the probability distrib
tion of the spacetime average of the fluctuating field. Minim
of the effective potential correspond to maxima of the pro
ability density of the spacetime average field. The way
have set up the argument applies equally well to QFTs
SPDEs and makes no reference to the notion of phys
energy.~This result is nonperturbative but approximate—it
not limited to one loop. If we take either the infinite volum
or infinite time limits, then with probability 1, the spacetim
average field must equal one of the minima of the effect
potential.!

C. Action and quasienergy for SPDEs

Even though the physical energy may not be defined
arbitrary SPDEs, we nevertheless can demonstrate that
always exists a positive-semidefinite functional of field co
figurations, the tree-level action, and a related ‘‘qua
energy,’’ whose minima correspond to maxima of the pro
ability distribution of field configurations.

From the way the functional formalism has been set
we can always define and calculate an effective action an
effective potential even if the underlying nonstochastic v
sion of the partial differential equation does not arise from
Lagrangian formulation. We have already seen that the
fective action has a natural interpretation in terms of
equations of motion once fluctuations are taken into acco
and that the effective potential governs fluctuations in
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spacetime average of the field. We now go one step furt
We distinguish two concepts of ‘‘energy,’’ the ‘‘true phys
cal energy’’ and the ‘‘quasienergy,’’ and show that even
the physical energy is undefined~or possibly not useful due
to dissipative effects!, the quasienergy is still a useful mea
sure of the extent to which fluctuations modify the nons
chastic equations of motion. We start from our general SP
~1!,

Df5F@f#1h, ~85!

and its nonstochastic version,

Df5F@f#. ~86!

Sometimes this nonstochastic partial differential equat
will arise from some Lagrangian, often it will not.

Even if the PDE (Df5F@f#) does not arise from a La
grangian, the results of this paper demonstrate that it is
ways possible to assign a tree-level action to the stocha
system:

Sclassical5
1

2E E dx dy~Df2F@f#!g2
21~Df2F@f#!>0.

~87!

This classical action is positive semidefinite, and has mini
~which are equal to zero! at field configurations that satisf
the zero-noise equations of motion. This is most obvious
white noise, when the action is a perfect square, but
result is general. The noise two-point correlation functi
@being an ~infinite-dimensional! covariance matrix# is by
definition positive definite. Therefore, its inverse is also po
tive definite and similarly the~infinite-dimensional! matrix
g2

21 is a positive definite operator. Thus this classical act
~the generalized Onsager-Machlup action@52#! is always
greater than or equal to zero.

The classical action thus measures the extent to whic
given field configuration fails to satisfy the zero-noise equ
tions of motion, the measure of the deviation being weigh
by theshapeof the noise correlations.~In fact, if the ampli-
tude A of the noise is set to zero, the action is identica
equal to zero.!

We now define the quasienergy by

S@f#5E Equasi@f#dt. ~88!

We justify calling this object the quasienergy by the fact th
if we treat it as a Hamiltonian functional, and put the resu
ing object into the partition function of an equilibrium stati
tical field theory, we get the generating functional for all t
correlation functions~ignoring ghost Jacobians for the mo
ment!. Explicitly, we can write

Equasi@f#5
1

2E E ddxW ddyW dt8~Df2F@f#!g2
21

3~Df2F@f#!. ~89!
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Note that the quasienergy depends both on the PDE an
the shape of the noise correlation function. If the amplitu
A of the noise is set to zero, this quasienergy is conser
and is exactly equal to zero. This quasienergy can be tho
of as a nonlinear generalization of the Onsager-Mach
‘‘energy’’ to arbitrary Gaussian noise. The particular lab
one chooses to apply to this quantity is not important as l
as one bears carefully in mind that this ‘‘energy’’ need n
be the physical energy.

If we now restrict ourselves to homogeneous and st
fields, and consider the effective potential as defined ab
then by the procedures used in quantum and stochastic
theories, the effective potential~multiplied by the volume of
space! is the stochastic expectation value of the quasiene
^Equasi@f#& in thepresenceof the noise-induced fluctuations
and subject to the constraint^f&5f. A proof of this result is
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provided on pp. 72 and 73 of Weinberg@20#. Though that
proof is phrased in a Lorentzian-signature QFT language
readily carries over to Euclidean-signature equilibrium sta
tical field theory. Once the physical energy is replaced by
quasienergy, the proof can be extended to SPDEs as we

We have been able to show that minima of the effect
potential also minimize the quasienergy, and therefore
noise-induced deviations from the zero-noise equations
motion.

D. Transition probabilities

What is the probability that a certain initial field configu
rationf i(xW ) at timet i evolves into a final field configuration
f f(xW ) at timet f? We have already developed the appropri
machinery to address this question. Indeed
Prob„f f~xW !,t f ;f i~xW !,t i…}E ~Dh!P @h#d@fsoln~xW ,t i ;h!2f i~xW !#d@fsoln~xW ,t f ;h!2f f~xW !#

}E ~Dh!~Df!P @h#d@fsoln~xW ,t;h!2f~xW ,t !#d@f~xW ,t i !2f i~xW !#d@f~xW ,t f !2f f~xW !#

}E ~Dh!~Df!P @h#d†Df2F@f#2h‡AJJ †d@f~xW ,t i !2f i~xW !#d@f~xW ,t f !2f f~xW !#

}E ~Df!P †Df2F@f#‡AJJ †d@f~xW ,t i !2f i~xW !#d@f~xW ,t f !2f f~xW !#

}E ~Df!P@f#d@f~xW ,t i !2f i~xW !#d@f~xW ,t f !2f f~xW !#

}E ~Df!exp~2S @f#/A!AJJ †d@f~xW ,t i !2f i~xW !#d@f~xW ,t f !2f f~xW !#

}E
f(xW ,t i )5f i (x

W )

f(xW ,t f )5f f (x
W )

~Df!exp~2S @f#/A!AJJ †. ~90!
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This is formally identical to the formula usually encou
tered in equilibrium statistical field theory, and everything
far is nonperturbatively correct.

Now take a saddle-point approximation: Find an interp

lating field f int(xW ,t) that minimizesS @f# and interpolates

from f i(xW ) to f f(xW ). Perform the Gaussian integral abo
the saddle point. Then by definition of the one-loop effect
action

Prob~f f~xW !,t f ;f i~xW !,t i !'expF2
G@f int#

A G . ~91!

This is only a one-loop result, but it demonstrates that
effective action for SPDEs inherits many of the importa
features of the effective action for QFTs.
-

e

e
t

E. Summary

From the above, we see that the effective action and
fective potential for SPDEs exhibit many of the key featur
of the effective action and effective potential of QFTs. Th
is important because it guarantees that not only is it re
tively easy to calculate the one-loop effective potential, b
also it is useful to do so: As is the case for QFTs, minima
the effective potential for SPDEs provide information abo
expectation values of the fields. The effective action a
provides information about fluctuations in spacetime av
aged fields, it gives information about the noise-induced
viations from the nonstochastic equations of motion, and
governs the transition probabilities whereby initial field co
figurations evolve to final field configurations. Thus, both t
effective potential and the effective action are as useful
SPDEs as they are for QFTs.

Furthermore, as demonstrated in recent work by Ale
ander and Eyink@56–58#, the effective potential is also a
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useful tool in a strong noise regime far from equilibrium
The major difference between those papers and our own
malism is that they work within the MSR approach. Th
also focus on strong noise regimes, while we emphasize
for many purposes a one-loop calculation is both compu
tionally efficient and quite sufficient to extract many ke
features of the physics of the system. The two approache
complementary, and where they overlap, they are in co
plete agreement.

VIII. DISCUSSION

In this paper we have developed a general and powe
formalism applicable to arbitrary SPDEs. We have sho
how to convertarbitrary correlation functions associate
with arbitrary SPDEs into functional integrals.~And for this
first step the noise does not have to be Gaussian.! For Gauss-
ian noise~not necessarily translation invariant! we have car-
ried the formalism further, setting up the basic ingredie
needed for Feynman diagram expansions with the noise
plitude serving as the loop-counting parameter, and defin
a nonperturbative effective action in analogy with QFT.

We hope to have convinced the reader that the ‘‘dir
approach’’ developed in this paper is both useful a
complementary to the more traditional MSR formalis
@1,12,15#. Some questions can more profitably be asked
answered in this ‘‘direct’’ formalism. For instance, the fa
that the noise amplitude is the loop-counting paramete
easy to establish in this ‘‘direct’’ formalism, but appears
have no analog result in the MSR formalism. The effect
action gives rise naturally to the concept of an effective
tential, a powerful construct well known and studied with
the QFT context, where it serves to classify and comp
ground states and allows one to investigate symmetry p
erties and patterns of symmetry breaking~both spontaneous
and dynamic!. An analogous construct can also be defin
and calculated for stochastic field theories based on SPD
and we have done so in this work. However, for arbitra
SPDEs, such as those contemplated here, the notio
ground state and effective potential must be approached
extra care and their physical interpretation clarified. We h
taken pains to do so, establishing that the minimum of
construct we call the effective potential corresponds to so
ing the full equations of motion~for homogeneous and stat
field configurations! in the presence of noise.

We feel that the most interesting result of this analysis
a general formula for the one-loop effective potential forany
SPDEs subject to translation-invariant Gaussian noise. T
is still an extremely broad class of problems, and in a pai
companion papers we will specialize this analysis to t
particular cases. First, we discuss the noisy Burgers equa
~KPZ equation!, where the effective potential approach im
mediately leads us to such interesting observations as
existence of dynamical symmetry breaking~DSB! and the
Coleman-Weinberg mechanism@31#. Second, we discuss th
reaction-diffusion-decay system, and explicitly calculate
renormalized effective potential for one, two, and three s
tial dimensions@30#. These are issues that are extremely d
ficult to address using the MSR approach.
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APPENDIX A: JACOBIAN FUNCTIONAL DETERMINANT

The Jacobian functional determinant is often~but not al-
ways! field independent, and can often~but not always! be
discarded. In this appendix we explore this issue in m
detail.

1. Causality: Retarded Green functions

This discussion is a generalization of Rivers@21#, pp. 155
and 156. There are also relevant comments in De Domin
and Peliti@12#, Appendix B, part C~pp. 370 and 371!. See
also the footnote on p. 214 of Frisch@3#, and the discussion
in Zinn-Justin~pp. 372 and 373@15#!. We are interested in
evaluating

J[detS D2
dF

df D . ~A1!

To proceed, we make some specific assumptions abou
form of D. Let us confine attentions to the class of differe
tial operators

Dn[
]n

]tn 2D0~¹W !. ~A2!

~If we takeD05¹W 2, thenD1 is the diffusion operator while
D2 is the wave operator, so this class of differential operat
is still broad enough to cover almost everything of physi
interest.! Now write

Jn[detS ] t
n2D02

dF

df D ~A3!

5det~] t
n!detF I 2GnS D01

dF

df D G ~A4!

5det~] t
n!exp Tr lnF I 2GnS D01

dF

df D G ~A5!

5det~] t
n!expH 2 (

m51

`

TrS 1

mFGnS D01
dF

df D GmD J .

~A6!

HereGn is the retarded Green function corresponding to] t
n .

Explicitly
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Gn~ t,t8!5
~ t2t8!n21

~n21!!
Q~ t2t8!. ~A7!

One can easily check that this is a Green function by co
puting, forn.1,

] tGn~ t,t8!5
~ t2t8!n22

~n22!!
Q~ t2t8!5Gn21~ t,t8!, ~A8!

and noting that

] tG1~ t,t8!5d~ t2t8!. ~A9!

Finally, the retarded nature of the Green function is due
the presence of the Heaviside step function.

The traces Tr in the formula for the JacobianJn are
spacetime traces. We may write this as Tr5trtime trspace, and
concentrate~for now! only on the trace over time trtime. For
n.1 it is easy to see that trtime(Gn)50, and in fact that for
all m.0, trtime(@Gn#m)50. To generalize this argument t
the spacetime trace, we need to make the assumption
F@f(xW ,t)# does not explicitly contain any time derivative
If this is the case, we can write

dF@f~xW ,t !#

df~yW ,t8!
5d~ t2t8!

dF@f~xW ,t !#

df~yW ,t !
. ~A10!

This now implies that for the spacetime trace (n.1;m.0),

TrS FGnH D01
dF@f#

df J GmD50. ~A11!

Thus the retarded nature of the Green function causes al
trace terms to vanish and we have the exact result tha
n.1 andF@f# not containing time derivatives

Jn[detS ] t
n2D02

dF

df D ~A12!

5det~] t
n!. ~A13!

This means that the functional determinant is simply a fie
independent constant. It is therefore irrelevant and may
discarded.~In particular, forn52, the stochastic wave equa
tion, one never has to evaluate the functional determina!
@Note: This argument also works providedn.11 ~the high-
est order of time derivatives occurring inF@f#). Proving
this is an easy exercise.# The partition function~characteris-
tic functional! is now, forn.1,

Z@J#}E ~Df!expF2
1

2E E ~Dnf2F@f#!Gh
21

3~Dnf2F@f#!GexpS E Jf D . ~A14!

For n51 the situation is almost as good. First note that
-

o

hat

he
or

-
e

t.

~G1!2~ t,t8!5E d t̄ G1~ t, t̄ !G1~ t̄ ,t8! ~A15!

5E d t̄ Q~ t2 t̄ !Q~ t̄ 2t8! ~A16!

5~ t2t8!Q~ t2t8!. ~A17!

Thus tr(@G1#2)50, and it is easy to show that form
.1, (G1)m5Gm so that tr(@G1#m)50. The only term that
survives is tr(G1)5Q(0). But Q(0) is ill-defined and must
be specified by some particular prescription. The prescrip
which is most useful in this context is the symmetric o
whereinQ(0) is nonzero and equals12 . This may be justified
by a limiting procedure as described, for example, in the t
by Zinn-Justin@15# ~Chap. 4, pp. 69 and 70!. This symmetric
prescription is equivalent to adopting theStratonovich calcu-
lus for stochastic equations. ChoosingQ(0)50 is equivalent
to the Ito calculus. The Ito calculus simplifies the Jacobia
determinant~to unity! at the cost of destroying equivarianc
under field redefinitions~the Ito calculus explicitly breaks
coordinate invariance in field space!. See, for instance, Eyink
@56# or Zinn-Justin@15#. We will stick with the symmetric
prescription~Stratonovich calculus! for this paper, though
suitable modifications for the Ito calculus are straightforwa
if at times tricky ~the loss of reparametrization invarianc
under field redefinitions implies that all arguments involvi
a change of variables must be carefully reassessed!.

Now for n51 only one of the trace terms in the func
tional determinant survives and we have~with the assump-
tion thatF@f# contains no time derivatives!

TrFG1

dF@f~x!#

df~y! G5TrFG1

dF@f~xW ,t !#

df~yW ,t !
G

5Q~0!E dt trspaceFdF@f~xW ,t !#

df~yW ,t !
G

5Q~0!TrFdF@f~xW ,t !#

df~yW ,t !
G . ~A18!

This implies

J1[detS ] t2D02
dF

df D ~A19!

5det~] t!expH 2Q~0!TrFD01
dF@f~xW !#

df~yW !
G J ~A20!

5det~] t!exp$2 1
2 Tr@D0#%expH 2

1

2
TrFdF@f~xW !#

df~yW !
G J .

~A21!

The first two factors in the last line are field independent a
so may be discarded with the result that
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J1}expH 2
1

2
TrFdF@f~xW !#

df~yW !
G J . ~A22!

The partition function~characteristic functional! is now

Z@J#}E ~Df!expF2
1

2E E ~D1f2F@f#!

3Gh
21~D1f2F@f#!G ~A23!

3expS 2
1

2
TrFdF@f~xW !#

df~yW !
G D expS E Jf D .

~A24!

This means that for stochastic differential equations that
first order in time, the functional determinant must be ke
There are specific choices of the nonlinear driving te
F@f# that lead to even further simplifications.

2. Jacobian functional determinant for local driving forces

Suppose thatF@f(x)# is a local functional of the fieldf.
This implies that there exists a local functionF(f,¹W ) such
that

dF@f~xW ,t !#

df~yW ,t8!
5F„f~xW ,t !,¹W …d~ t2t8!d~xW2yW !. ~A25!

Evaluating the functional determinant now gives

J5expS 2
1

2
dd~0W !E dt ddxW FD . ~A26!

Insofar as we trust the formal resultdd(0W )50 ~see, for ex-
ample,@15#! we can discard the functional determinant as
irrelevant constant. This formal result is a somewhat cont
tious issue, and we have found that it is often more use
and safer to either prove that the Jacobian is a fie
independent constant,@31# or to carry the Jacobian along fo
the whole calculation@30#.

For more general driving termsF@f# one must keep the
functional determinant. Nevertheless it is clear that for la
classes of stochastic partial differential equations, includ
many of the most important and interesting cases, the J
bian can be safely ignored.

For differential operatorsD that are not of the formDn
discussed above, or driving forcesF more complicated than
those discussed above, one has to use other means of e
ating the functional determinant.

For the noisy Burgers equation~KPZ system!, the func-
tional determinant can be shown to be a field-independ
constant that can be discarded. A proof of this will be p
vided in @31#. For the reaction-diffusion-decay system,
the other hand, we find it more convenient to explicitly ke
the Jacobian determinant@30#.
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3. Jacobian functional determinant via Feynman diagrams

Let us now suppose thatD5Dn , as discussed in the firs
section of this Appendix. ThenD(kW ,v)5(2 iv)n2D0(kW )
and the ghost propagator is

Gghost~kW ,v!5
1

~2 iv!n2D0~kW !
, ~A27!

where the retarded nature of the Green function now imp
that all poles in thev plane occur in the lower half of this
plane. For each ghost loop~assumingF@f# contains no time
derivatives! we must perform an integral over both fre
quency and momenta of the type

I n
m[E dv ddkW P~kW ,kW i !

~2p!d11)
i 51

m

$@2 i ~v2v i !#
n2D0~kW2kW i !%

,

~A28!

where all the poles~in v) lie in the lower half-plane and the
v i and kW i are linear combinations of the momenta flowin
into the ghost loop.@The functionP(kW ,kW i) is some possibly
complicated function of the momenta, typically a polyn
mial, derived fromdF/df. There is also a set of externa
legs ~derived fromdF/df) attached to each vertex of th
ghost loop, but we do not need to know the detailed struct
of these vertices to derive the expression above.#

Since all the poles are known to lie in the lower ha
plane, the contour of integration can be pushed out to infin
in the upper half-plane via the replacementv→v1 iL(L
.0), without changing the value of the integral. Thus w
can write

I n
m5E dv ddkW P~kW ,kW i !

~2p!d11)
i 51

m

$@2 i ~v2v i !2L#n2D0~kW2kW i !%

; L.0 . ~A29!

Now take the limitL→1` to deduceI n
m50.

The only place that this argument fails is when thev
integral does not converge. This happens only forn51 ~first
order in time! andm51 ~tadpole diagram!, in which case we
need to consider

I 1
1[E dv ddkW P~kW !

~2p!d11$2 iv2D0~kW !%
. ~A30!

This already reproduces the key results of the preceding
tion: The functional determinant can be ignored forn.1 and
for n51 it collapses to a single term. Performing thev
integral for this remaining term, we see

I 1
15E ddkW

~2p!d11
i ln@2 iv2D0~kW !#uv52`

v51` ~A31!

5E ddkW

~2p!d11
i ~ ip! ~A32!
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52
1

2

E ddkW

~2p!d
~A33!

52
1

2
dd~0W !. ~A34!

We conclude, then, that the tadpole ghost diagram exa
reproduces the exp„2 1

2 Tr(dF/df)… obtained by other mean
in the first section of this Appendix. In fact, Faddeev-Pop
ghost techniques are in complete agreement with direct
culations of the functional determinant. This ghost-bas
analysis also makes clear why things are different in QFT
one uses the Feynman propagator instead of the reta
propagator, there are poles on both sides of the real line
one cannot push the path of integration out to1 i`.

APPENDIX B: EQUATIONS OF MOTION
IN THE PRESENCE OF NOISE

1. Effect of adding a small decay term

We start with the zero-loop equations of motion for th
SPDE,

S D†2
dF†

df D E g2
21~Df2F@f#!5J. ~B1!

In particular, for zero external source (J50) any solution of
the nonstochastic bare equations of motion,Df2F@f#50,
is also a solution of the zero-loop equations of motion.~Zero
loops almost correspond to setting the noise amplitude
zero and reducing the SPDE to its nonstochastic analog.! But
there is a risk that the zero-loop equations may havemore
solutions than the nonstochastic bare equations. This po
tial problem arises if the operatorD†2(dF/df)† is singular
@so that it has a nontrivial null space~kernel!#. If this opera-
tor is singular, then there will be many different fieldsf(xW ,t)
that correspond to a givenJ, making the whole Legendre
transform procedure invalid.

The best way to fix this is to add a small decay term in t
system and then take the limit as the decay term vanis
Specifically, take

F@f#→F@f#2ef. ~B2!

This perturbed system has zero-loop equations given by

S D†2
dF†

df
1eI D E g2

21~Df2F@f#1ef!5J. ~B3!

Even if D†2(dF/df)† is singular, the perturbed operato
will not be, and so the perturbed equations of motion w
have a unique solutionfsoln(J,e). It is appropriate to take
the Legendre transform using this unique solution and c
sider the limit e→0 at the end of the calculation. IfD†
tly
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2(dF/df)† is nonsingular, this does not change anything
D†2(dF/df)† is singular, this procedure provides a pr
scription for defining a unique solution to the zero-loo
equations.

The above complication is not peculiar to SPDEs a
their associated nonquantum field theories; the same so
behavior also occurs in ordinary QFTs. For example,
QED,J50 corresponds to arbitrary constant electromagn
field. In order to assure thatJ50 has the unique solution
F50, the easiest thing to do is to add a small photon ma

2. A vanishing theorem

SupposeD†2(dF/df)† is nonsingular. Then the zero
loop equations of motion forJ50 are equivalent to the clas
sical equationsDf2F@f#50. The effective action at zero
loop order, evaluated on solutions of the zero-loop equati
of motion, is exactly zero.

In fact, the one-loop effective action evaluated on so
tions of the zero-loop equations of motion is also exac
zero. This happens due to the explicit occurrence ofDf
2F@f# in the one-loop contribution to the effective actio
@see Eqs.~63! or ~64!#, so that for solutions of the zero-loo
equations of motion there is an exact cancellation betw
the Jacobian and the fluctuation operatorS2.

On the other hand, ifD†2(dF/df)† is singular, just per-
turb the system with a small amount ofe decay. The previ-
ous argument goes through foreÞ0 @technically as long ase
is not an eigenvalue ofD†2(dF/df)†]. Taking the limit e
→0 justifies the extension of the vanishing result to the s
gular case.

Now consider solutions of the one-loop equations of m
tion. These one-loop equations of motion are of the form

S D†2
dF†

df
1eI Dg2

21~Df2F@f#1ef!5O~A!,

~B4!

with the right-hand side being a complicated expressi
Nevertheless, we do not need to know exactly what this te
is to deduce that evaluated at solutions of these equation
motion G@fsoln#501O(A2).

This vanishing of the effective action at solutions of t
one-loop equations of motion provides a useful consiste
check on specific calculations. The underlying reason for
vanishing theorem is most easily addressed in the MSR
malism. In fact, it can be shown that

G@f;f0#5 1
2 E E $~Defff2Feff@f#!g2

21

3~Defff2Feff@f#!%ddxW dt ddyW dt8, ~B5!

whereDeff and Feff are some effective differential operato
and effective driving force appropriate to the fully interac
ing theory.
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